TASTE MASKING TECHNOLOGIES: A REVIEW

SHALINI SHARMA AND SHAILA LEWIS*
Dept of Pharmaceutics, Manipal college of Pharmaceutical Sciences, Manipal University, Manipal 576 104, Karnataka, INDIA

Email : s.lewis@manipal.edu
Received: 19 Dec 2009, Revised and Accepted: 15 Jan 2010

ABSTRACT

Oral administration of pharmaceuticals is one of the most popular method of drug delivery. Many orally administered drugs elicit bitter taste. Palatability is an extremely important factor in ensuring the likelihood that the recipient will intake the pharmaceuticals. A constant problem is in treatment of patient is their inability or unwillingness to swallow solid dosage form such as tablets specially in children and the elderly. These dosage form permit perceptible exposure of active drug ingredient to the taste bud. Accordingly, masking of unpleasant taste characteristics of drug is an important factor in formulation of these agents. "The worse the taste of the medication, the better the cure" was once the prevailing attitude. Today a change in patient attitude and development of taste masking technique has reversed this opinion. Patients now expect and demand formulations that are pleasantly, or at least tolerably, flavored. This article reviews the earlier methodologies and approaches of taste masking of bitterness reduction.

Key words: Taste masking, Taste bud

INTRODUCTION

The sense of taste

Taste is the ability to respond to dissolved molecules and ions-“gatekeeper to the body”. Human detects taste with taste receptor cells that are clustered in to onion-shaped organs called taste buds. Each taste bud has a pore that opens out to surface of the tongue enabling molecules and ions taken into the mouth to reach the receptor cells inside.

Four basic tastes are confirmed to specific regions of tongue (Table1). But some workers deny the presence of specific regions of the tongue for a particular taste and consider it as a misconception. Threshold for taste is a minimum concentration of a substance that evokes perception of a taste. The following table 1 gives the threshold concentration of four primary taste sensations.

It can be seen that tongue is 10,000 times more sensitive to the bitterness of quinine than to sweetness of sugar. Saccharine, on this scale would rate about 0.001%.

Pharmaceutical companies can save themselves much grief by addressing the taste factor early in the product development. In so doing, they can get their medications to market more quickly, ensure patient compliance, gain market leadership and reap generous economic rewards. They can also stay in compliance with FDA’s final rule, which went into effect December 2000.

So major taste masking efforts are required before bitter drugs are acceptable for market trials. Major taste masking technologies are based on the reduction of solubility of the drug in the saliva so the drug concentration in saliva will remain below taste threshold value. The desire for improved palatability of formulations has prompted the development of various new technologies for taste abatement. Many of these technologies have been successfully commercialized. But, the ideal solution of taste masking would be the discovery of universal inhibitor of bitter taste of all drug.

A) Taste masking with flavors and sweeteners

This technique is simplest approach for taste masking. But this approach is not very successful for highly bitter drugs. Artificial sweeteners and flavors are generally being used along with other taste-masking techniques to improve the efficiency of these techniques.

Eucalyptus oil is a major constituent of many mouth washes and cough drop formulations which is a bitter tasting substance. Its bitter taste can be masked by agent including fenchone, borneol or isoborneol.

Cooling effect of certain flavouring agent aids in reducing perception of bitterness. The physiology involved is merely to numb taste buds, either rapidly or over a period of time, so that the cooling effect actually build up after ingestion. The brain perceives the coolness even though physically the temperature of the product has not changed.

Some generalization concerning the selection of flavors to mask specific types of taste have been suggested by Janovasky and Wesley. Such recommendations are listed in table 3.
Table 1: Specific area of tongue and threshold concentration for primary taste sensations

<table>
<thead>
<tr>
<th>Taste</th>
<th>Area of tongue</th>
<th>Threshold concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweet(sucrose)</td>
<td>Tip of tongue</td>
<td>0.5%</td>
</tr>
<tr>
<td>Salt(NaCl)</td>
<td>Tip and sides of tongue</td>
<td>0.25%</td>
</tr>
<tr>
<td>Sour(HCl)</td>
<td>Sides of tongue</td>
<td>0.007%</td>
</tr>
<tr>
<td>Bitter(Quinine)</td>
<td>Back of tongue</td>
<td>0.00005%</td>
</tr>
</tbody>
</table>

Taste masking techniques

To achieve the goal of taste abatement of bitter or unpleasant taste of drug, various techniques reported in the literature are as follows:

- Addition of flavouring and sweetening agents.
- Microencapsulation
- Ion-exchange.
- Inclusion complexation
- Granulation
- Adsorption
- Prodrug approach
- Bitterness inhibitor
- Multiple emulsion technique
- Gel formation
- Miscellaneous

Table 2: Classification of flavouring agents

<table>
<thead>
<tr>
<th>Type</th>
<th>Example</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural</td>
<td>Peppermint</td>
<td>Less stable</td>
</tr>
<tr>
<td>Artificial</td>
<td>Vanilla</td>
<td>Very stable</td>
</tr>
<tr>
<td>Natural</td>
<td>Strawberry</td>
<td>Effective at low concentration</td>
</tr>
<tr>
<td>Artificial</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Flavour selection

<table>
<thead>
<tr>
<th>Taste sensation</th>
<th>Recommended flavor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salt</td>
<td>Butterscotch, apple, apricot, peach, vanilla</td>
</tr>
<tr>
<td>Bitter</td>
<td>Wild cherry, walnut, chocolate, mint combinations, passion fruit</td>
</tr>
<tr>
<td>Sweet</td>
<td>Fruit and berry, vanilla</td>
</tr>
<tr>
<td>Sour</td>
<td>Citrus flavors, licorice, root beer, raspberry</td>
</tr>
</tbody>
</table>

A combination of flavoring agents is usually employed. Flavor adjuvants like menthol and chloroform are considered as a desensitizing agents because addition to their own odor and flavor they also have mild anesthetic effect on taste receptors.

Aspirin medicated floss contains sodium phenolate as an anesthetizing agent in addition to chocolate flavor to mask the bitter taste of aspirin.

A survey of the taste preferences of human race, as a whole, indicates that sweet taste is very agreeable to our species. Hence for controlling the taste qualities effort are directed to make preparations sweet to different degrees. Sweeteners are commonly used for this purpose. Table 4 presents a compilation of the most common artificials and natural sweeteners used in pharmaceutical products, their relative sweetness levels, and pertinent comments.

Table 4: Relative sweetness of commonly used sweeteners

<table>
<thead>
<tr>
<th>Sweetening agents</th>
<th>Relative sweetness*</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspartame</td>
<td>200</td>
<td>Not very stable in solution</td>
</tr>
<tr>
<td>Acesulfame</td>
<td>137-200</td>
<td>Bitter after taste if used in higher concentration</td>
</tr>
<tr>
<td>Cyclamate</td>
<td>40</td>
<td>Banned</td>
</tr>
<tr>
<td>Glycerin</td>
<td>50</td>
<td>Moderately expensive</td>
</tr>
<tr>
<td>Lactose</td>
<td>0.16</td>
<td>Large amount required</td>
</tr>
<tr>
<td>Manitol</td>
<td>0.60</td>
<td>Negative heat of solution</td>
</tr>
<tr>
<td>Saccharin</td>
<td>450</td>
<td>Unpleasant after taste</td>
</tr>
<tr>
<td>Sucrose</td>
<td>1</td>
<td>Most commonly used</td>
</tr>
<tr>
<td>Sucralose</td>
<td>600</td>
<td>Synergistic sweetening effect</td>
</tr>
</tbody>
</table>

*Sucrose is taken as a standard of 1 for comparison.

Aspartame is used as prominent sweetener in providing bitterness reduction. A very small concentration (0.8%) is effective in reducing bitterness of 25% acetaminophen. Cyclamates have been banned by the USDA since 1970 due to its carcinogenic effect.

The neohesperidine dihydrochalone is an artificial bitterness suppressor and flavor modifier. It is a open chain analogue of neohesperidine, a bitter flavanone that occurs in seville oranges (citrus aurantium). Taste masking properties of the neohesperidine dihydrochalone have been reviewed by Cano et al. It is a bitterness suppressor and flavor modifier that also elicits a very intense lingering sweet taste. Due to its lingering sweet taste the taste of bitter substance appears later in time and taste could be masked.
B) Taste masking by microencapsulation

It is important to understand that only soluble portion of the drug can generate the sensation of taste. And it is possible, or even likely, that coating the active drug with a properly selected polymer film can reduce its solubility in saliva in thus taste could be masked. Microcapsules are made up of a polymeric skin or wall enclosing a drug and the taste buds and this taste of active could be masked. Microencapsulation is a process by which very tiny droplets or particles of liquid or solid material are surrounded or coated with a film or polymeric material.

Advantages
- Taste masking can be achieved with the desirable fast or controlled drug release.
- Bitter liquids may be coated to convert them to solid particles.
- The coated bitter particles can adapt to a wide variety of dosage forms and product applications.

In literature first four techniques of microencapsulation have been reported for taste masking purpose, as shown in table 6. The air suspension coating process can appropriately be described as an upward moving, expanded, fluidized bed in central portion of the coating chamber coupled with a downward-moving, more condensed fluidized bed on the periphery of the column. Three types of air suspension coater are available, namely, top spray coater, wurster bottom spray coater and tangential spray coater.

Polymers used for coating

One of the most important factor to be considered in taste masking by coating is selection of coating polymers. Ideally, the coating polymers should be such that it prevents the release of active agent in the oral cavity, following per oral intake, but allows it in stomach or small intestine where the drug is expected to be absorbed. Polymers, which mainly insoluble at salivary pH 6.8 but readily, dissolve at gastric fluid pH 1.2 could be a good candidate for taste masking. Choosing one of these polymers is not a simple selection. Before making a decision on coating material following factors must be considered. The particle size of drug, flow characteristics of drug, moisture sensitivity, long term stability, temperature of processing and most important, method delivery of active drug molecule.

Cushioning material like Avicel pH 102, microcrystalline cellulose can reduces the rupturing of microcapsule if used as direct compressible diluents.

| Table 5: Taste masking of drug by flavors and sweeteners |
|----------------|----------------|----------------|----------------|----------------|----------------|
| Drugs | Taste | Taste masking agents | Dosage forms | References |
| Eucalyptus oil | Bitter | Eucalyptus oil | Mouth washes | Fennochrome, borneol | 6 |
| Ibuprofen | Bitter | Ibuprofen | Syrup, suspension | Sorbitol solution | 12, 13 |
| Thymol, Triclosan | Bitter | Thymol | Oral rinses | Citrus flavor, limonene | 11 |
| Zinc acetate dihydrate | Bitter | Zinc acetate | Lozenges | Sorbitol solution | 14 |

Active ingredient is significantly objectionable in taste then flavours alone are unable to complete a completely satisfactory product. Major taste masking efforts are required before they are acceptable for market trials. But this approach can always play a significant supportive role to other taste masking approach.

| Table 6: Taste masking of bitter drugs by microencapsulation |
|----------------|----------------|----------------|----------------|----------------|----------------|
| Technique | Drug | Coating agent | Dosage form | Reference |
| Wurster fluid bed coating | Acetaminophen | Croscarmellose | Dispersible tablet | 15 |
| | Caffeine/Cimetidine | Eudragit RL 30D, RS30D | Chewable tablet | 16 |
| | Ciprofloxacin | Eudragit NE30D/RL30D, HPMC | Oily suspension, sachets | 17 |
| | Levofloxacin | Eudragit acetyl | E100, Cellulose | Suspension | 18 |
| Top spray fluid bed coating | Sildenafil citrate | Eudragit NE30D, E-100 | Mouth melt tablet | 19 |
| | Chlorphenamine maleate | Ethyl cellulose | PVP-K30 | 20 |
| Tangential spray fluid bed coating | Acetaminophen | Eudragit E-100, Cellulose acetate | Chewable tablet | 21 |
| | Theophylline | Eudragit NE30D, guar gum | Dry suspension | 22 |
| Spray drying | Ampicillin trihydrate | Sodium CMC | Powders | 23 |
| | Nizatidine | Eudragit E-100 | Powders | 24 |
| Spray congealing | Roxithromycin | Eudragit RS100 / RL 100 suspension | Powders | 25 |
| Coacervation Phase separation | Clarithromycin | Glyceril monostearate, | Powders | 26 |
| Solvent Evaporation | Chloroquine diphosphate | Eudragit E100 | Dry Suspension | 27 |

- The goal of microencapsulation may be accomplished by any of the following techniques
- Air suspension coating
- Coacervation-phase separation
- Spray drying and spray congealing
- Solvent evaporation
- Multiorifice centrifugal process
- Pan coating
- Interfacial polymerisation
Once the type of coating and the plasticizers (if any) to use have been established then level of coating to be optimized. If purpose of coating is taste masking, it may be simple taste panel to determine the proper coating level. Thick coating can cause problems in terms of size and cost apart from being problematic in getting the desired release profile of the drug. However, by coordinating the right type of coating material, it is possible to completely mask the taste of bitter drug while at the same time, not adversely affecting the intended drug release profile.

Various coating materials for taste masking reported in literature are different grades of Eudragit 31,37,38,19,21,22,29, cellulose material 15,17,18,20,21,23,25 and waxes 32,36,39 form combinations.

C) Taste masking by ion exchange resins

Ion exchange resin are synthetic inert organic polymers consisting of a hydrocarbon network to which ionisable groups are attached and they have the ability to exchange their labile ions for ions present in the solution with which they are in contact.

The most frequently employed polymeric network used is a copolymer of styrene and divinylbenzene (DVB). Apart from this other polymers such as those of acrylic and methacrylic acid crosslinked with divinyl benzene and containing appropriate functional groups, have been used as ion exchange drug carriers.34,35

Types of resins

Ion exchange resins contain positively or negatively charged functional group and are thus classified as either anionic or cationic exchangers. Within each category, they are classified as strong or weak, depending on their affinity for counter ions.

Table 7: Common ion exchange resins14,36,37

<table>
<thead>
<tr>
<th>Type</th>
<th>Functional group</th>
<th>Polymer backbone</th>
<th>Commercial resins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong anion</td>
<td>-NR\textsubscript{2}</td>
<td>Polystyrene-DVB</td>
<td>Amberlite IR 400, Dowex 1</td>
</tr>
<tr>
<td>Weak anion</td>
<td>-NR\textsubscript{2}</td>
<td>Polystyrene-DVB</td>
<td>Amberlite IR 48, Dowex 2</td>
</tr>
<tr>
<td>Strong cation</td>
<td>-SO\textsubscript{2}H</td>
<td>Polystyrene-DVB</td>
<td>Amberlite IR 120, Dowex 50</td>
</tr>
<tr>
<td>Weak cation</td>
<td>-COOH</td>
<td>Methacrylic acid-DVB</td>
<td>Amberlite IRC 50, Indian 204,234, Tulson 353,339</td>
</tr>
</tbody>
</table>

These insoluble ion exchange resins may be supplied in case of cation exchangers as sodium, potassium or ammonium salts and of anion exchangers usually as the chloride. It is frequently necessary to convert a resin completely from one ionic form to another. Charged drugs are normally loaded on to ion exchange resins by two methods, viz, column and batch method.34,36

Column method

In this method a highly concentrated drug solution is passed through a column of resin particles. Since the reaction is an equilibrium phenomenon, maximum potency and efficiency is best obtained by the column method.

Batch method

In this method the drug solution is agitated with a quantity of resin particles until equilibrium is established.

The reaction involved during complexation of drug with resin may be indicated as follows: 41

\[\text{Re-COOH}^+ + \text{Basic drug}^+ \rightarrow \text{Re-COOH} + \text{Basic drug} \]

\[\text{Re-(CH\textsubscript{3})\textsubscript{2}Cl}^+ + \text{Acidic drug}^+ \rightarrow \text{Re-(CH\textsubscript{3})\textsubscript{2}Cl} + \text{Acidic drug} \]

Upon ingestion, drugs are most likely eluted from cation exchange resins by H+, Na+ or K+ ions and from anion exchange resins by Cl-, as these ions are most plentiful available in gastrointestinal secretions.

Typical reactions involved in the gastrointestinal fluids may be envisaged as follows:

In the stomach:

\[\text{Re-COO}^+ \text{Drug}^+ + \text{HCl} \rightarrow \text{Re-COOH} + \text{Drug Hydrochloride} \]

\[\text{Re-(CH\textsubscript{3})\textsubscript{2}Cl}^+ \text{Drug}^- + \text{HCl} \rightarrow \text{Re-(CH\textsubscript{3})\textsubscript{2}Cl}^- + \text{Acidic drug} \]

In the intestine:

\[\text{Re-COO}^+ \text{Drug}^+ + \text{NaCl} \rightarrow \text{Re-COOONa} + \text{Drug Hydrochloride} \]

\[\text{Re-(CH\textsubscript{3})\textsubscript{2}Cl}^+ \text{Drug}^- + \text{NaCl} \rightarrow \text{Re-(CH\textsubscript{3})\textsubscript{2}Cl}^- + \text{Sodium salt of drug} \]

Exchange capacity

The exchange capacity of an ion exchange resin refers to the number of ionic sites per unit weight or volume (meq./gram or meq./mL). Sulfonic acid resin derived from polystyrene matrix have lower exchange capacities, about 4 meq/gm, than carboxylic acid resin derived from acrylic acid polymer, about 10 meq/gm, because of bulkier ionic substituents of sulfonic acid resin and poly styrene matrix.36

Weak acid cation exchange resins have a pKa value of about 6, so that at pH 4 or above their exchange capacity tends to increase.

Ionisation of weak acid cation exchange resin occurs to an appreciable extent only in alkaline solution, i.e., in their salt form. This is reported that their exchange capacity is very low below pH 7 and moderately constant values at pH above about 9.

The rate of ion exchange is influenced by the permeability of the solvent and solute through the pores of the resin, whose number and size are influenced by the amount of crosslinking. The diffusion path length is obviously also related to the size of the resin particles.34,38

Applications

Ion exchange resins are used in drug formulation to stabilize the sensitive components,9 sustain release of the drug,39,40 and taste masking (table 9).

Table 8: Literature report on taste masking by ion exchange resins

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage form</th>
<th>Resin used</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloroquine</td>
<td>suspension</td>
<td>Indion cation exchange resin</td>
<td>45</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>-</td>
<td>Lewatit CNP 934</td>
<td>46</td>
</tr>
<tr>
<td>Dextromethorphan</td>
<td>Dry / liquid suspension</td>
<td>Car beromer 244/254</td>
<td>47</td>
</tr>
<tr>
<td>hydrobromide</td>
<td>-</td>
<td>Indion CRP 244/254</td>
<td>48</td>
</tr>
<tr>
<td>Ephedrine</td>
<td>suspension</td>
<td>Car beromer 934</td>
<td>49</td>
</tr>
<tr>
<td>hydrochloride</td>
<td>Dry / liquid suspension</td>
<td>Car beromer 49,50</td>
<td>49</td>
</tr>
<tr>
<td>Erythromycin,</td>
<td>Liquid</td>
<td>Car beromer 934</td>
<td>50</td>
</tr>
<tr>
<td>clarithromycin</td>
<td>suspension</td>
<td>Car beromer 49,50</td>
<td>51</td>
</tr>
<tr>
<td>Orbifloxacin</td>
<td>Dry / liquid suspension</td>
<td>Am berite 1RP6/49</td>
<td>52</td>
</tr>
<tr>
<td>Paroxetine</td>
<td>Liquid</td>
<td>Am berite 1RP8</td>
<td>53</td>
</tr>
<tr>
<td>hydrochloride</td>
<td>suspension</td>
<td>Am berite 1RP6/88</td>
<td>54</td>
</tr>
<tr>
<td>Ranitidine</td>
<td>Chewable tablet</td>
<td>Am berite 1RP6/98</td>
<td>55</td>
</tr>
<tr>
<td>hydrochloride</td>
<td>Dry / liquid suspension</td>
<td>Am berite 1RP6/98</td>
<td>56</td>
</tr>
</tbody>
</table>

Interaction of amine drugs with polycarboxylic acid ion exchange resin 50,51 indicated that these resins may be quite useful in taste coverage. These studies indicated that saliva, with an average pH of 6.7 and a cation concentration of 40meq/L would only elute a limited percentage of drug from adsorbate. However rapid elution would occur as soon as the adsorbates is exposed to the low pH of the stomach. The particle coating of polycarboxylic acid ion exchange resin adsorbate can also be considered as a method for achieving taste coverage. This is beneficial because the taste coverage ability of the uncoated adsorbate.

D) Taste masking by formulation of inclusion complexes

Inclusion complexes are ‘host-guest’ relationship in which complexing agent act as host and provide cavities in which foreign
guest molecule may fit. Cyclodextrin form inclusion types of complexes with organic molecules both in solid state and in solution.\(^5\)

The complexing agent is capable of masking bitter taste of drug by decreasing its oral solubility on ingestion or decreasing the amount of bitter drug particles exposed to taste buds, thereby reducing the preception of bitter taste. Vandewater forces are mainly involved in inclusion complexes.

B-cyclodextrin is most widely used complexing agent for inclusion type complexes. It is sweet, non toxic, cyclic oligosaccharide obtained from starch.

Carbepentane citrate can be formulated in palatable liquid formulation with 50% reduced bitterness by forming 1:1 complex with cyclodextrin. Similarly a 1:1 to 1:15 inclusion complex of ibuprofen and hydroxy propyl-B-cyclodextrin can be formulated as palatable solution.\(^5\)

Table 9: Taste masking of bitter drug by complexation

<table>
<thead>
<tr>
<th>Drug</th>
<th>Complexing Agent</th>
<th>Dosage form</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benexate hydrochloride</td>
<td>Cyclohextrin</td>
<td>Granules</td>
<td>57</td>
</tr>
<tr>
<td>Carbepentane citrate</td>
<td>Cyclohextrin</td>
<td>Oral liquid</td>
<td>57</td>
</tr>
<tr>
<td>Chloroquine phosphate</td>
<td>Tannic acid</td>
<td>Syrup</td>
<td>57</td>
</tr>
<tr>
<td>Dimenhydrinate</td>
<td>Eudragit S-100</td>
<td>Chewable</td>
<td>58</td>
</tr>
<tr>
<td>Gymnema sylvestra</td>
<td>Chitosan</td>
<td>Oral liquid</td>
<td>57</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>Hydroxy propyl-B-cyclodextrin</td>
<td>Solution</td>
<td>57</td>
</tr>
</tbody>
</table>

E) Taste masking by granulation

Granulation is a common processing step in the production of tablet dosage form. This step can be exploited as a means for taste masking of slightly bitter tasting drug. Some saliva insoluble polymers can also act as binding agent, granules prepared from these polymers show less solubility in saliva and thus taste could be masked. Granulation lowers the effective surface area of the bitter substance that come in contact with the tongue upon oral intake. But this reduction in surface area of bitter substance may or may not be effective in masking the bad taste. Taste masked granules, prepared from saliva insoluble polymer, can be formulated in various type of tablet dosage form, e.g., rapidly disintegrating tablet and chewable tablet.\(^5\)

Taste masked granules of bitter tasting drug pirenzepine and oxybutynin have been prepared by the extrusion using aminoalkyl methacrylate copolymer. (Eudragit E-100)\(^5\)

F) Taste masking by adsorption

Adsorbate of bitter tasting drug can be considered as the less saliva soluble versions of these drugs. Adsorption involves preparing a solution of the drug and mixing it with an insoluble powder that will adsorb the drug, removing the solvent, drying the resultant powder, and then using this dried adsorbates in the preparation of the final dosage form. Many substrates like Veegum, bentonite, silica gel and silicates can be used for the preparation of adsorbate of bitter drugs.

Loperamide and phenyl propanolamine have been adsorbed on magnesium aluminium silicates also known as Veegum F to prepare bitter taste masked suspension of these drugs.\(^5\)

G) Taste masking by prodrug approach

A prodrug is chemically modified inert drug precursor which upon biotransformation liberates the pharmaceutically active parent compound. A combination of factors is perhaps operative in the demonstration of a taste response molecular geometry is one of them, for eg, bitterness of a molecule, may be due to the efficiency of the taste receptor substrate adsorption reaction, which is related to the molecular geometry of the substrate. If alteration of the parent molecule occurs by derivative formation, the geometry is altered, affecting the adsorption constant. This effect, in turn, may or may not be due to lack of aqueous solubility of the derivative to eliminate the bitter taste response. Thus the magnitude of a bitter taste response or taste receptor-substrate adsorption constant may be modified by changing the molecular configuration of the parent molecule. The extremely bitter antibiotics have been the focus of much work in reversible drug modification (Table 11).\(^5\)

Table 10: Prodrug for bitter taste masking \(^64,66\)

<table>
<thead>
<tr>
<th>Parent molecule</th>
<th>Reversible modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloramphenicol</td>
<td>Palmitate or phosphate ester</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>Alkyl ester</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>Alkyl ester</td>
</tr>
<tr>
<td>Lincomycin</td>
<td>Phosphate or alkyl ester</td>
</tr>
<tr>
<td>Tetracyclin</td>
<td>3,4,5-Trimethoxy benzoate salts</td>
</tr>
</tbody>
</table>

H) Solid dispersion system

Solid dispersion have been defined as dispersion of one or more active ingredients in an inert carrier or matrix at solid state prepared by melting(fusion) solvent or melting solvent method. Carriers used in solid dispersion system include povidone, polyethylene glycols of various molecular weights, hydroxy propyl methyl cellulose, urea, mannitol and ethyl cellulose.

Various approaches for preparation of solid dispersion are described below-

i) Melting method: In this method, the drug or drug mixture and a carrier are melted together by heating. The melted mixture is cooled & solidified rapidly in an ice bath with vigorous stirring. The final solid mass is crushed & pulverised.

ii) Solvent method: In this method, the active drug and carrier are dissolved in a common solvent, followed by solvent evaporation and recovery of the solid dispersion.

iii) Melting solvent method: In this method drug in solutions is incorporated into molten mass of polyethylene glycol at a temperature 70˚C without removing the solvent.\(^6\)

I) Molecular complexes with drug with other chemicals

The solubility and adsorption of drug can be modified by formation of molecular complexes. Consequently lowering drug solubility through molecular complex formation can decrease the intensity of bitterness of drug. Higuchi and pitman, reported that caffeine forms complexes with organic acids that are less soluble than xanthine and as such can be used to decreased the bitter taste of caffeine.\(^6\)

J) Taste masking by bitterness inhibitors

The development of a specific universal inhibitor for bitter taste has been widely required in the fields of taste physiology and pharmaceutical sciences, but no such inhibitors has been available. One difficulty in discovering of universal inhibitor for bitter taste is that substances that inhibits bitterness of one compound will not influence the bitterness of a second because many different classes of compound impart bitterness.

Sodium salts such as sodium chloride, sodium acetate, sodium gluconate have been shown to be potent inhibitors of some bitter compounds. The mechanism is not known, however, research shows that sodium act at peripheral taste level rather than a cognitive effect.\(^67,68\)

Bitter substances are commonly hydrophobic in nature hence lipoprotein (PA-LG) composed of phosphatidic acid and β-
lactoglobulin can mask the target sites for bitter substances on the taste receptor membrane without affecting responses to salts, acids, sugars or sweet amino acids.

Bitter taste of brucine, berberine, chloride, caffeine, denatonium benzoate, glycyrrhizic acid, L-phenylalanine, naringin, propranolol hydrochloride, quinine hydrochloride, strychnine nitrate and theophylline have been suppressed by lipoprotein.

Selective inhibition of bitter taste of various drugs by phospholipids such as phosphatidic acid, phosphatidylinositol, soy lecithin, have been reported. Bitter taste of polymixin B sulfate and trimethoprim-sulfamethoxazole have been masked by BMI 60 obtained by fractioning soy lecithin.

The w/o/w or o/w/o type multiple emulsions are vesicular systems in which active ingredients can be entrapped in internal phase. The entrapped substances can be transferred from internal phase to external phase through the ‘membrane phase’. This phase controls the release of drug from system.

These system could be used for controlled-release delivery of pharmaceuticals. If the system is stable enough for a reasonable shelf life, the formulation could also mask the taste of drug.

Both w/o/w or o/w/o multiple emulsions of chloroquine phosphate have been prepared and reported to be partially effective in masking the bitter taste of drug.

K) Taste masking by gelation

Water insoluble gelation on the surface of tablet containing bitter drug can be used for taste masking. Sodium alginate has the ability to cause water insoluble gelation in presence of bivalent metal ions.

Tablet of amiprole hydrochloride have been taste masked by applying a undercoat of sodium alginate and overcoat of calcium gluconate. In presence of saliva, sodium alginate react with bivalent calcium and form water insoluble gel and thus taste masking achieved.

I) Miscellaneous taste masking approaches

• By effervescent agents

Effervescent agents have been shown to be useful and advantageous for oral administration of drugs and have been employed for use as taste masking agents for dosage forms that are not dissolved in water prior to administration. A chewing gum composition of bitter medicament was formulated to supply the medicament to oral cavity for local application or for buccal absorption. It comprise a chewing base, an orally administrable medicament, a taste masking generator of carbon dioxide, and optionally a taste bud desensitizing composition (eg, oral anaesthetic such as benzocaine) and other non active material such as sweeteners, flavoring components, and fillers. Recently, effervescent tablets of fentanyl and prochlorperazine were developed to supply these drugs to the oral cavity for buccal, sublingual, and gingival absorption. The formulation contain the drug in combination with effervescent agent to promote their absorption in the oral cavity and to mask their bitter taste. An additional pH adjusting substance was also included in fentanyl formulation for further promotion for absorption.

• Rheological modification

Increasing the viscosity with rheological modifier such as gums or carbohydrates can lower the diffusion of bitter substances from the saliva to the taste buds. Acetaminophen suspension can be formulated with xanthan gum (0.1-0.2%) and micro-crystalline cellulose (0.6-1%) to reduce bitter taste. The antidepressant drug mirtazapine is formulated as an aqueous suspension using methonine (stabilizer) and maltitol (thickening agent). Maltitol is stable in the acidic pH range of 2 to 3 and besides masking the unpleasant taste of the drug, it also inhibit its undesirable local anaesthetic effect.

• Continuous multipurpose melt (CMT) Technology

The CMT method was developed for the continuous granulation and coating of pharmacologically active substances. It was concluded that this method could be successfully applied for taste masking of bitter drugs.

EVALUATION TECHNIQUES

Sensory evaluation

Taste, to think of, is a very subjective perception. Depending on individuals, the perceived taste may vary to different degrees. If we have well controlled experimental set up, it is possible to accurately and reproducibly measures taste thresholds. To quantitatively evaluate taste sensation, following methods have been reported in literature.

• Panel testing (human subjects)
• Measurement of frog taste nerve responses.
• Multichannel taste sensor/ magic tongue
• Spectrophotometric evaluation/ D30’s value

Panel Testing

The panel testing is a psychophysical rating of the gustatory stimuli. In this method, a group of about 5-10 human volunteers is trained for taste evaluation by using reference solutions ranging in taste from tasteless to very bitter. Numerical values are then assigned to these levels of bitterness (eg.,0-5). Subsequently, test solution is tasted and rated on the same scale to assess its bitterness.

Literature reports panel testing in invariably all the taste-masked frugs being evaluated. The ease of the method combined with the accuracy of human perception of taste against any other gustatory evaluation technique makes panel testing the most commonly used technique.

• Measurement of Frog Taste Nerve Responses

In this method, adult bull frogs are anesthetized intraperitonally and the glossopharyngeal nerve is then located and dissected from the surrounding tissue and cut proximally. An ac-amplifier and an electronic integrator are used to respectively amplify and integrate the nerve impulses. The peak height of the integrated response is then taken as the magnitude of response.

Quinine sulphate formulations, taste masked by PA-LG(phosphatidic acid-lactoglobulin) combination have been reported to be evaluated by this technique.

• Multichannel Taste Sensor / Magic tongue

This is an automated taste sensing device to detect the magnitude of bitterness of a drug substance. The device has a transducer which is composed of several kinds of lipid/polymer membranes with different characteristics that can detect taste in a manner similar to human gustatory sensation. Taste response is transferred into a pattern composed of electric signals of membrane potentials of the receptor part. Different response electric potential pattern are obtained for substance producing different taste qualities.

Recently, the technique has been applied, for the quantitative evaluation of the bitterness of some commercially available medicines. Quinine hydrochloride was taken as the standard for bitterness. Basic drug with amino groups in the molecule such as quinine, show a comparitively good correlation between the relative response electric potential (mV) of channels 1 or 2 of the taste sensor, which contain negatively charged membranes, and the bitterness as determined by human gustatory sensations tests. Secondly, for anionic drugs, such as diclofenac sodium or salicylic acid, the positively charged membrane in channel 5 or 6 seemed to be usefull even through they are being sour rather than bitter. For drugs with both an amino (cationic) groups and a carboxylic acid (anionic) group in the molecule, such as theophylline, caffeine and metronidazole, the electric potential (mV) of channel 1 or 2 did not increase, even though bitterness was observed in human gustatory sensation test. Therefore, different types of membrane component will be needed for a complete evaluation of the bitterness of medicines.
• Spectrophotometric Method

A known quantity of the taste-masked formulation is mixed with 10 ml of distilled water in 10 ml syringe by revolving the syringe and end to end, five times in 30 seconds. The test medium is then filtered through a membrane filter, followed by spectrophotometric determination of the concentration of the drug in the filtrate. If this concentration is below the threshold concentration, it may be concluded that the bitter taste would be masked in vivo. This technique has been applied to evaluate the taste masked granules of sparflaxacin, with threshold concentration being 100μg/ml.

CONCLUSION

After considering all these factors it is concluded that an ideal taste masking formulation should have following properties:

• Involve least number of equipments and processing steps.
• Require minimum number of excipients for an optimum formulation.
• No adverse affect on drug bioavailability.
• Require excipients that are economical and easily available.
• Least manufacturing cost.
• Can be carried out at room temperature.
• Require excipients that have high margin of safety.
• Rapid and easy to prepare.

REFERENCES

2. www.udmc.ac.uk/physiology/im/taste.html
3. www.cfac.vkbios/staff/jacob/teaching/sensory/taste.htm
5. www.fda.com
30. Habib Y.S., Shangraw R. Cushioning beads and tablet comprising the same capable of forming a suspension. U.S. Pat. No. 5,780,055 to University at Maryland, Baltimore; 1998.
34. Deasy. Ion exchange resin in microencapsulation. Newyork: Marcel Dekker Inc; 1980. p. 150

