INTRODUCTION

The antibacterial agent mupirocin (Fig 1) is used as a topical agent in the treatment of superficial infections by gram-positive bacteria, particularly Staphylococcus aureus. It is also demonstrated that the compound inhibits the growth of a number of pathogenic fungi in vitro. It inhibits protein, RNA and DNA synthesis in bacteria. Inside the topical mupirocin formulations, polyethylene glycol (PEG) 400 and 4000 exist at various ratios, both as solvent and skin penetration enhancer. In one of the most cited pharmaceutical programs, half of mupirocin remains nonionized. The obtained results were in accordance with the value of 4.88, which had been found theoretically using Palla’s computer program. This is the first experimental study on the pH constant of mupirocin.

MATERIALS AND METHOD

50.00 mL solutions each including: 0.154 mol L⁻¹ NaCl (to provide an ionic strength equivalent to 0.9% isotonic NaCl solution), 4.00x10⁻³ mol L⁻¹ HCl, 40.00 mL 40% PEG 400 solution and 1.00x10⁻³ mol L⁻¹ HCl, 40.00 mL 40% PEG 400 solution and 1.00x10⁻³ mol L⁻¹ HCl. Titration curves were plotted versus mL values (Graph 1). Using the titration values, pH values were calculated according to Irving-Rossotti method and were plotted versus pH. The pH constant was determined from the pH axis, corresponding to pKa = 0.5 on pH curve. Distributions of ionized and nonionized species of the drug were calculated, using the pKa value.

RESULTS AND DISCUSSION

pKa constant was determined as 5.48±0.06 (n=6) (Graph 1). This pH value is due to the ionization of the carboxylate group on the molecule. The obtained results were in accordance with the value of 4.88, which had been found theoretically using pKa Pallas computer program. This is the first experimental study on the pH constant of mupirocin.

Performing the experiments in 0.9% isotonic NaCl solution, using PEG 400 as a solubilization agent, aided the imitation of the biological conditions that it is delivered to the organism, to relate its pH with its transfer from the membranes. Mupirocin is mostly used on skin. As seen from Graph 2, half of mupirocin remains nonionized at pH of the skin (5.5) in the ratio of PEG where pharmaceutical dosage from is imitated and since nonionized forms of drug molecules penetrate easier through the biomembranes, penetration of mupirocin is expected to increase as the pH of the ointment decreases, because that means the increase of the ratio of the nonionized form. There are various pharmaceutical bases which started to take place of PEG’s. It would also be useful to determine pKa constants in these bases, to predict its membrane transfer.

Abstract

pKa constant of mupirocin and distribution of species of the drug molecule at various pH values were determined potentiometrically, using Irving-Rossotti method, where PEG ratio in pharmaceutical dosage forms was imitated to provide first experimental data on its pKa, to be used in commenting on its penetration through bio-membranes, and in its analysis.

Keywords: pKa, protonation constant, dissociation constant, mupirocin, potentiometry.

INTRODUCTION

The antibacterial agent mupirocin (Fig 1) is used as a topical agent in the treatment of superficial infections by gram-positive bacteria, particularly Staphylococcus aureus. It is also demonstrated that the compound inhibits the growth of a number of pathogenic fungi in vitro. It inhibits protein, RNA and DNA synthesis in bacteria. Inside the topical mupirocin formulations, polyethylene glycol (PEG) 400 and 4000 exist at various ratios, both as solvent and skin penetration enhancer. In one of the most cited pharmaceutical programs, half of mupirocin remains nonionized. The obtained results were in accordance with the value of 4.88, which had been found theoretically using pKa Pallas computer program. This is the first experimental study on the pH constant of mupirocin.

MATERIALS AND METHOD

50.00 mL solutions each including: 0.154 mol L⁻¹ NaCl (to provide an ionic strength equivalent to 0.9% isotonic NaCl solution), 4.00x10⁻³ mol L⁻¹ HCl, 40.00 mL 40% PEG 400 solution and 1.00x10⁻³ mol L⁻¹ HCl, 40.00 mL 40% PEG 400 solution and 1.00x10⁻³ mol L⁻¹ HCl. Titration curves were plotted versus mL values (Graph 1). Using the titration values, pH values were calculated according to Irving-Rossotti method and were plotted versus pH. The pH constant was determined from the pH axis, corresponding to pKa = 0.5 on pH curve. Distributions of ionized and nonionized species of the drug were calculated, using the pKa value.

RESULTS AND DISCUSSION

pKa constant was determined as 5.48±0.06 (n=6) (Graph 1). This pH value is due to the ionization of the carboxylate group on the molecule. The obtained results were in accordance with the value of 4.88, which had been found theoretically using pKa Pallas computer program. This is the first experimental study on the pH constant of mupirocin.

Performing the experiments in 0.9% isotonic NaCl solution, using PEG 400 as a solubilization agent, aided the imitation of the biological conditions that it is delivered to the organism, to relate its pH with its transfer from the membranes. Mupirocin is mostly used on skin. As seen from Graph 2, half of mupirocin remains nonionized at pH of the skin (5.5) in the ratio of PEG where pharmaceutical dosage from is imitated and since nonionized forms of drug molecules penetrate easier through the biomembranes, penetration of mupirocin is expected to increase as the pH of the ointment decreases, because that means the increase of the ratio of the nonionized form. There are various pharmaceutical bases which started to take place of PEG’s. It would also be useful to determine pKa constants in these bases, to predict its membrane transfer.

Abstract

pKa constant of mupirocin and distribution of species of the drug molecule at various pH values were determined potentiometrically, using Irving-Rossotti method, where PEG ratio in pharmaceutical dosage forms was imitated to provide first experimental data on its pKa, to be used in commenting on its penetration through bio-membranes, and in its analysis.

Keywords: pKa, protonation constant, dissociation constant, mupirocin, potentiometry.
correctly. \(pK_a \) is more important in penetration in infectious wounds. \(pK_a \) of mupirocin will also serve as a data in development of quantification and separation methods. To know which form of a drug molecule exists in which ratio in a definite solvent media is no doubt, of great use in choosing the right separation technique during the quantification procedures.

\[\text{Graph 1: A sample pH-} \alpha \text{ graph of mupirocin. } pK_a = 5.48 \pm 0.06 (n=6) \]

\[\text{Graph 2: Distribution of mupirocin species at various pH values} \]

ACKNOWLEDGEMENT

Thanks to Med-illac and Teva Pharmaceuticals for their valuable support.

REFERENCES