SYNTHETIC APPROACHES FOR QUINOLINE AND ISOQUINOLINE

S.N. PANDEYA, ALKA TYAGI
Department of Pharmaceutical Chemistry, S.I.T.M, LKO, India
Received: 10 March 2011, Revised and Accepted: 11 April 2011

ABSTRACT
The Quinoline and Isoquinoline nucleus is found to be very important in pharmacy field. In recent years, a lot of synthetic drugs have been synthesized in different yield.

In the present review, several other synthetic approaches are discussed involving easily available chemicals and producing high yields.

Keywords: Quinoline, Isoquinoline

INTRODUCTION

Quinoline

Quinoline is a heterocyclic aromatic organic compound. It has the formula C9H7N and is a colourless hygroscopic liquid with a strong odour. Aged samples, if exposed to light, become yellow and later brown. Quinoline is only slightly soluble in cold water but dissolves readily in hot water and most organic solvents.1

Quinoline is mainly used as a building block to other specialty chemicals. Approximately 4 tonnes are produced annually according to a report published in 2005. Its principal use is as a precursor to 8-hydroxyquinoline, which is a versatile chelating agent and precursor to pesticides. Its 2-and 4-methyl derivatives are precursors to cyanine dyes. Oxidation of quinoline affords quinolinic acid (pyridine-2,3-dicarboxylic acid), a precursor to the herbicide sold under the name “Assert”.2 Like other nitrogen heterocyclic compounds, such as pyridine derivatives, quinoline is often reported as an environmental contaminant associated with facilities processing oil shale or coal, and has also been found at legacy wood treatment sites. Owing to high water quinoline has significant potential for mobility in the environment, which may promote water contamination.3

Isoquinoline

Isoquinoline and quinoline are benzopyridines, which are composed of a benzene ring fused to a pyridine ring.4 In a broader sense, the term isoquinoline is used to make reference to isoquinoline derivatives. 1-Benzylisoquinoline is the structural backbone in naturally occurring alkaloids including papaverine and morphine. The isoquinoline ring in these natural compound derives from the aromatic amino acid tyrosine.5 6 7 8 9 10 11

ISOQUINOLINE

IUPAC name
Isoquinoline
Other names
1-benzazine, 1-azanaphthalene, benz[o]pyridine
Properties
Molecular formula
C9H7N
Molar mass
129.16 g/mol
Density
1.093 g/ml
Melting point
−15 °C
Boiling point
238 °C
Solubility in water
Soluble

Properties
Isoquinoline is a colorless hygroscopic liquid at room temperature with a penetrating, unpleasant odor. Impure samples can appear brownish, as is typical for nitrogen heterocycles. It crystallizes platelets that have a low solubility in water but dissolve well in ethanol, acetone, diethyl ether, carbon disulfide, and other common organic solvents. It is also soluble in dilute acids as the protonated derivative.
Being an analog of pyridine, isoquinoline is a weak base \(^{12}\), with an \(pK_b \) of 8.6. It protonates to form salts upon treatment with strong acids, such as HCl. It forms adducts with Lewis acids, such as BF₃.

ISOQUINOLINE

<table>
<thead>
<tr>
<th>IUPAC name</th>
<th>ISOQUINOLINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other names</td>
<td>benzo[c]pyridine, 2-benzanine</td>
</tr>
</tbody>
</table>

Properties

<table>
<thead>
<tr>
<th>Molecular formula</th>
<th>C₉H₇N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molar mass</td>
<td>129.16 g/mol</td>
</tr>
<tr>
<td>Appearance</td>
<td>yellowish oily liquid, hygroscopic platelets when solid</td>
</tr>
<tr>
<td>Density</td>
<td>1.099 g/cm³</td>
</tr>
<tr>
<td>Melting point</td>
<td>26 - 28°C</td>
</tr>
<tr>
<td>Boiling point</td>
<td>242 °C, 515 K, 468 °F</td>
</tr>
</tbody>
</table>

QUINOLINE SYNTHESIS

Name Reactions

SKRAUP SYNTHESIS

Quinoline is produced when aniline, conc. Sulfuric acid, glycerol, and mild oxidising agent are heated together \(^{16}\). The reaction proceeds via dehydration of glycerol to acrolein. It is the best reaction for synthesis of quinoline \(^{17}\).

\[
\begin{align*}
\text{Aniline} + \text{acrolein} & \rightarrow \text{Quinoline} \\
\end{align*}
\]

DOEBNER-MILLER RING SYNTHESIS

The interaction of enone gp. (carbonyl gp.) to aniline takes place producing quinoline derivative. Improvement to this reaction includes the use of 2 phase organic or aqueous acid system. \(^{18}\)

\[
\begin{align*}
\text{p-methyl aniline} + \text{enone gp.} & \rightarrow \text{quinoline} \\
\end{align*}
\]
FRIEDLANDER SYNTHESIS: 14

The reaction proceeds through aldol type condensation. O-amino aryl aldehyde is reacted with a ketone carrying an alpha methylene group.

\[
\text{o-Amino aryl aldehyde} + \text{methylated ketone} \xrightarrow{\text{KOH}} \text{quinoine}
\]

COMBES SYNTHESIS: 12,13

Condensation of 1,3 dicarbonyl compound with the arylamine gives the high yield of amino enone, which can be cyclized with conc. acid19. In order to access 4-unsubstituted quinoline, a 1,3 keto aldehyde, guarantees the regioselectivity 20,21

\[
\text{arylamine} + \text{1,3 dicarbonyl compound} \xrightarrow{\text{HEAT}} \text{amino enone compound}
\]

\[
\text{Quinoline}
\]

OTHER METHODS 13

A. Ring closure of o-amino aryl-alkynyl-carbinols, readily available by acetylide addition to an aryl ketone or aldehyde can be achieved with Cu and Pd catalysis. 22 O-nitroaryl-carbinol undergo nitro group reduction and ring closure simply by treatment with a metal/acid combination. 23

\[
\text{Fe, conc. HCl, EtOH, Reflux} \xrightarrow{\text{chloroacetyl chloride}} \text{quinoline}
\]

B. Pd catalysed amidation of halo-arens allows simple assembly of precursors to 4-quinolones. 24

\[
\text{NaOH, 1,4 dioxane, 110°C} \xrightarrow{\text{90%}} \text{quinoline}
\]
ISOQUINOLINE SYNTHESIS

POMERANZ-FRITSCH SYNTHESIS: 13

This reaction is carried out in 2 steps:
1) aryl aldehyde is condensed with amino acetal to form an aryl-aldimine.
2) aldimine is cyclized by treatment with strong acids.25,26

PICTET-SPENGLER SYNTHESIS: 13

2-aryl ethanamines react with aldehyde easily to give imines.1,2,3,4 Tetrahydro isoquinoline results from the cyclization with acid catalysis.

ISOQUINOLINE FROM O-ALKYNYL-ARALDEHYDE IMINES: 13

ISOQUINOLINE ETHANEAMIDES: 13
FROM DIALDEHYDES: (Wittig-Horner reaction) 13

\[
\text{CHO} + \text{NHAc} \rightarrow \text{CH}_{2}\text{COOCH}_3 \]

DBU, CH₂Cl₂, O°C 100%

isoquinoline-3-ester

SYNTHESIS OF METHYL 2-(3-PYRIDYL CARBONYL)BENZOATE AND THE 2-(PYRIDYL CARBONYL)BENZOIC ACIDS: SYNTHESIS OF BENZOISOQUINOLINE-5, 10-DIONE (2-AZAANTHRAQUINONE). 27

Methyl 2-(3-pyridylcarbonyl) benzoate (1) and 2-(3-pyridylcarbonyl) benzoic acid (2) were easily prepared from 3-bromopyridine via a bromine–lithium exchange reaction. 28 To reach the acid 2, esterification of the acid 2 was not necessary to get the ester 1; this latter was obtained in 56% yield quenching 3-lithiopyridine with dimethyl phthalate. 29,30

\[
\text{Br} \rightarrow \text{O}_2\text{C} \rightarrow \text{O}_2\text{C} \rightarrow \text{OH} \rightarrow \text{CO} \rightarrow \text{OMe} \rightarrow \text{OH} \\
1 \text{ 156%} \rightarrow \text{2 67%} \rightarrow \text{3 39%}
\]

(i) 1 equiv. BuLi, Et₂O, 75 °C, 1 h;
(ii) 1 equiv. phthalic anhydride, 75 °C, 2 h;
(iii) acidic hydrolysis;
(iv) 1 equiv. dimethyl phthalate, 75 °C, 2 h;
(v) hydrolysis
SYNTHESIS OF BENZO ISOQUINOLINE-5, 10-DIONE[2-AZAANTHRAQUINONE]. Interestingly, when exposed to this base in tetrahydrofuran (THF) at 0 °C, the ester 1 was deprotonated and the lithio derivative at C4 was converted in situ to biologically active 2-azaanthraquinone (4) in 44% yield. The product 4 was also formed from the related acid 2, albeit in lower yield (35%) \(^{31,32}\).

\[
\text{i. } 3 \text{ eq. LTMP, THF, 2 hr}
\]
\[
\text{ii. hydrolysis}
\]
\[
\text{iii. } 3 \text{ eq LTMP, THF, 2 hr}
\]

SYNTHESIS OF BENZO[G]QUINOLINE-5,10-DIONE (1-AZAANTHRAQUINONE): \(^{27}\)

The protocol was extended to the acid 3, giving biologically active 2,1-azaanthraquinone (5) in a poor yield of 16%. Intramolecular complexation of the Lewis acidic lithium atom of the COOLi group by the pyridine nitrogen could favour intermolecular addition of the lithiopyridine formed to a ketone CO group present.

SYNTHESIS OF THIENO(3,2-G)QUINOLINE 4, 9-DIONE. \(^{27}\)

Active thieno[3,2-g]quinoline-4, 9-dione (8) \(^{31}\) was obtained in 10% and 25% yields, respectively, when the acid 6 and its ethyl Ester 7 were exposed to LTMP. The aforementioned less acidic 6 Hydrogen at C3 and, more importantly, the facile deprotonation of the thiophene ring under the conditions used could alter the course of the reaction \(^{35,36}\).

\[
\text{i. } 3 \text{ eq LTMP, THF, -75 °C, 2 hr}
\]
\[
\text{ii. } 3 \text{ eq LTMP, THF, 2 hr}
\]
\[
\text{iii. } 3 \text{ equiv. LTMP, THF, 0 °C,}
\]
SYNTHESIS OF METHYL 2-(3-QUINOLYL CARBONYL BENZOATE AND 2-(3-QUINOLYL CARBONYL) BENZOIC ACID: 27

Methyl 2-(3-quinolylcarbonyl) benzoate (9) and 2-(3-quinolylcarbonyl) Benzoic acid (10) were prepared through a bromine-lithium exchange reaction of 3-bromoquinoline.37

$$\text{Br} \quad \text{N} \quad \text{C} \quad \text{O} \quad \text{Me}$$

$\text{9} \quad 65\%$

$$\text{Br} \quad \text{N} \quad \text{C} \quad \text{O} \quad \text{HO}$$

$\text{10} \quad 51\%$

i. eq tertiary BuLi, Et₂O, 1 hr
ii. 1 eq dimethyl, -75 °C 2 hr
iii. hydrolysis
iv. 1 eq phthalic anhydride –75 °C, 2 hr
v. acidic hydrolysis

SYNTHESIS OF BENZO(PHENANTHRIDINE-7,12 DIONE)27

$$\text{N} \quad \text{C} \quad \text{O} \quad \text{OMe}$$

$\text{9} \quad 34\%$

$$\text{OMe} \quad \text{N} \quad \text{C} \quad \text{O} \quad \text{OH}$$

$\text{10} \quad 10\%$

i. 3 eq LTMP, THF, 2 hr
ii. hydrolysis
iii. 3 eq LTMP, THF, 2 hr

![Chemical structures and reaction schemes]

SELECTIVE N-5 METHYLATION OF 13 AND SELECTIVE N-4 METHYLATION OF 15.40,41

SYNTHESIS OF NEW PYRIDO [4,3-G AND 3,4-G] QUINOLINE-5,10-DIONE AND DIHYDROTHIENO [2,3-G AND 3,2-G]QUINOLINE-4,9-DIONE DERIVATIVES.42

The compounds presented in this study were obtained by a cycloaddition reaction between the corresponding thiazolidine derivatives 18a-e and quinoline-5,8-dione, using silver carbonate and DBU as base.43

Scheme. General synthetic method. Reagents:

i. Ag2CO3, DBU, CH3CN;
ii. HCl/H2O;
iii. Aryl-COCl, TEA, THF;
iv. a: Boc-L-Phe, HBTU, HOBt, DIEA, DMF; b: HCl/diethyl ether solution; c: Phenylisocyanate, CH2Cl2, Δ.
REFERENCES

1. H:\mw2\Quinoline- Wikipedia, the free encyclopedia htm.
4. "Quinoline". Encyclopedia Britannica. 1911
5. H:\mw2\Isoquinoline - Wikipedia, the free encyclopedia htm.
41. Isabel Gomez-Monterrey et al. Synthesis of new pyrido[4,3-g and 3,4-g]quinoline-5,10-dione and dihydrothieno[2,3-g and 3,2-g]quinoline-4,9-dione derivatives and preliminary evaluation of cytotoxic activity. 2004;5: 8596.
