INCIDENCE OF BACTEREMIA ASSOCIATED WITH CENTRAL VENOUS CATHETER IN PATIENTS ON HEMODIALYSIS

POOJA GUPTA, REENA SET, KALPANA MEHTA, JAYANTI SHASTRI
Dept. of Microbiology AIMSR- Bathinda 151001, Dept. Of Microbiology, Dept. of Nephrology, Dept. of Microbiology T.N.M.C and B.Y.L Nair Hospital Mumbai. Email: dr_pooja1953@sify.com

Received: 24 March 2011, Revised and Accepted: 25 April 2011

ABSTRACT
The use of temporary hemodialysis catheters is often complicated by infectious or mechanical complications which are responsible for considerable morbidity and mortality in hemodialysis patients.

Aims: To study the incidence of infections associated with Central Venous Catheter (CVC) access and incidence of secondary bacteremia in hemodialysis patients. Also we studied the risk factors and bacteria, commonly associated with CVC infection in hemodialysis patients.

Methods: We conducted a prospective study in Nephrology department at a tertiary hospital. Prospective surveillance for hemodialysis catheter related blood stream infections (CRBSI) was performed in hundred patients in whom CVC was the access. Blood culture and Maki’s semi-quantitative method for catheter tip were used for processing.

Results: Catheter related bacteremia (CRB) was diagnosed in 15 patients (15%). Secondary bacteremia was seen in 5 patients (5%); in 4 patients the source was urinary tract. Age and sex did not alter the risk while diabetes, hypoalbuminemia and anemia contributed to increased risk. Staphylococcus aureus and Coagulase negative Staphylococcus accounted for majority of CRB episodes, the other being Gram negative organisms like Pseudomonas spp. and E.coli. All S.aureus isolates were methicillin sensitive i.e. were MSSA. Secondary bacteremia was mainly due to E.coli. Conclusion: Hemodialysis catheters had a significant infection rate with Gram positive organisms being responsible for majority of CRBSI (catheter related blood stream infections) in our hospital.

Keywords: Bacteremia, CVC, Hemodialysis, CRBSI.

INTRODUCTION
Hemodialysis (HD) acts wonders by improving the quality of life in patients of end stage renal disease. HD machine removes wastes from the blood stream and regulates the body’s fluid and chemical balances.

Vascular access acts as the bridge between the patient and the machine circuit, hence it is called the “Achilles heel of hemodialysis”.1

Clinical data confirm that CVC are a major source of bacterial colonization and infection as compared to other access types.

Catheter related bacteremia (CRB) is the most significant infectious complication of HD catheters, occurring in 5-18% of catheters and results in patient’s morbidity or premature catheter removal.2 Hence we conducted a prospective study on HD patients with CVC to assess the incidence, associated risk factors and causative organisms of CVC associated infections.

MATERIALS AND METHODS
The present study was a prospective analysis of infection rates in HD unit in T.N.Medical College and B.Y.L Nair Hospital, Mumbai, a large tertiary care hospital carried out after obtaining approval of the institutional ethics committee. While patients with CVC were included, those with AV fistula or AV graft were excluded. Hundred consecutive such patients were included in this study which was conducted over a span of nine months from July 2005 to March 2006. A special proforma was designed related to patient’s details but no efforts were made to collect information about the dialysis membrane and the dialysate composition.

Catheter insertion: Temporary noncuffed catheters were inserted by the renal unit medical staff after disinfection of the catheter site with 0.5% chlorhexidine in 70% alcohol, by the Seldinger technique.3 Later the catheter was flushed with heparin in 0.9% saline.

Sample collection
a) Blood: Samples were collected after obtaining written informed consent from patients. Blood was collected and inoculated in Hartley’s broth on two occasions. First, a single sample was collected from the peripheral vein before insertion of the catheter to rule out any existing bacteremia. If positive, the patient was excluded from the study. Secondly, after 72 hours of the insertion, two 5 ml samples of blood were collected, one from the peripheral vein and the other from the catheters; the latter being collected after at least 12 hours of hemodialysis to obviate any effects of heparin. Catheter blood was collected from both the ports after cleaning them with 70% alcohol and betadine.

This was repeated in case the patient developed fever or showed any symptoms of infection.

In the laboratory, subsamples were done from Hartley’s broth onto blood agar (BA) and MacConkey medium after overnight incubation at 37°C and also on the 2nd, 4th and 7th days and were then discarded, if negative.

Meanwhile, a check was kept on the patient’s condition, regarding any fever, exit site infection and other investigations done.

b) Catheter tip: This was collected only from patients who had their catheters removed on completion of their HD sessions or in case they showed any signs of infection. Distal 5 cm of catheter segment was cut aseptically avoiding any skin contact. It was placed in a sterile test tube and sent to the laboratory where it was cultured by Maki’s standard semi-quantitative method on BA and then put in trypticase soy broth (TSB).4 Both were incubated overnight at 37°C. TSB was cultured on BA and MacConkey medium. A colony count of ≥ 15 was considered significant for cultures done by Maki’s method.4 If the same organisms grew from both peripheral and CVC blood cultures, confirmation was done by the pour-plate quantitative method.5

Besides blood, urine was collected from all the patients. Pus and sputum samples were collected only when indicated. All isolated bacteria were identified by using standard Microbiology procedures6 and Antibiotic susceptibility testing was done as per

Keywords: Bacteremia, CVC, Hemodialysis, CRBSI.
the CLSI guidelines. At the end of the study statistical analysis was done by the Chi square test.

Table 1: Distribution of Type of Infection

<table>
<thead>
<tr>
<th>Type of Infection</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>15</td>
<td>15.00</td>
</tr>
<tr>
<td>Secondary</td>
<td>5</td>
<td>5.00</td>
</tr>
<tr>
<td>Colonization</td>
<td>8</td>
<td>8.00</td>
</tr>
<tr>
<td>No growth</td>
<td>72</td>
<td>72.00</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Table 2: Association between site of insertion and primary infection

<table>
<thead>
<tr>
<th>Site of Insertion</th>
<th>Primary Infection</th>
<th>No growth</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Growth</td>
<td>No growth</td>
<td></td>
</tr>
<tr>
<td>Internal Jugular vein</td>
<td>10 (72.20)</td>
<td>72 (87.80)</td>
<td>82 (100)</td>
</tr>
<tr>
<td>Femoral Vein</td>
<td>5 (29.40)</td>
<td>12 (70.60)</td>
<td>17 (100)</td>
</tr>
<tr>
<td>Subclavian Vein</td>
<td>0 (0.00)</td>
<td>1 (100)</td>
<td>1 (100)</td>
</tr>
<tr>
<td>Total</td>
<td>15 (15.00)</td>
<td>85 (85.00)</td>
<td>100 (100)</td>
</tr>
</tbody>
</table>

Incidence of CRBSI was 16.5% in females as compared to 14.5% in male patients (p=0.832) as shown in (Table 3)

Table 3: Association between sex and primary infection

<table>
<thead>
<tr>
<th>Gender</th>
<th>Primary Infection</th>
<th>No growth</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Growth</td>
<td>No growth</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>5 (16.10)</td>
<td>26 (83.90)</td>
<td>31 (100)</td>
</tr>
<tr>
<td>Male</td>
<td>10 (14.50)</td>
<td>59 (85.50)</td>
<td>69 (100)</td>
</tr>
<tr>
<td>Total</td>
<td>15 (15.00)</td>
<td>85 (85.00)</td>
<td>100 (100)</td>
</tr>
</tbody>
</table>

Our patients were divided into 15 years age group range. The maximum CRBSI incidence was 20.5% , seen in 31‐45 year age group followed by 16% in 15‐30 years group (p=0.686) as shown in (Table 4)

Table 4: Association between age and primary infection

<table>
<thead>
<tr>
<th>Age in year</th>
<th>Primary Infection</th>
<th>No growth</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Growth</td>
<td>No growth</td>
<td></td>
</tr>
<tr>
<td>15 to 30</td>
<td>4 (16.0)</td>
<td>21 (84.0)</td>
<td>25 (100)</td>
</tr>
<tr>
<td>31 to 45</td>
<td>8 (20.50)</td>
<td>31 (79.50)</td>
<td>39 (100)</td>
</tr>
<tr>
<td>46 to 60</td>
<td>2 (9.10)</td>
<td>20 (90.90)</td>
<td>22 (100)</td>
</tr>
<tr>
<td>61 to 75</td>
<td>1 (7.70)</td>
<td>12 (92.30)</td>
<td>13 (100)</td>
</tr>
<tr>
<td>76 to 90</td>
<td>0 (0.00)</td>
<td>1 (100)</td>
<td>1 (100)</td>
</tr>
<tr>
<td>Total</td>
<td>15 (15.00)</td>
<td>85 (85.00)</td>
<td>100 (100)</td>
</tr>
</tbody>
</table>

Out of 18 Diabetic patients, 8 showed CRBSI(44.4) while it was just 8.5% in non diabetics (p=0.000112) as shown in (Table 5)

Table 5: Association between blood sugar and primary infection

<table>
<thead>
<tr>
<th>Blood Sug</th>
<th>Primary Infection</th>
<th>No growth</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Growth</td>
<td>No growth</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>8 (44.40)</td>
<td>10 (55.60)</td>
<td>18 (100)</td>
</tr>
<tr>
<td>Normal</td>
<td>7 (8.50)</td>
<td>75 (91.50)</td>
<td>82 (100)</td>
</tr>
<tr>
<td>Total</td>
<td>15 (15.00)</td>
<td>85 (85.00)</td>
<td>100 (100)</td>
</tr>
</tbody>
</table>

All 15 episodes of CRBSI were seen in patients with hypo‐albuminemia; incidence being 17.4% (p=0.026), this was the most salient feature of the study as shown in

Table 6: Association between albumin and primary infection

<table>
<thead>
<tr>
<th>Albumin (mg/dl)</th>
<th>Primary Infection</th>
<th>No growth</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Growth</td>
<td>No growth</td>
<td></td>
</tr>
<tr>
<td><= 3.5</td>
<td>15 (17.4)</td>
<td>71 (82.6)</td>
<td>86 (100)</td>
</tr>
<tr>
<td>> 3.5</td>
<td>7 (8.50)</td>
<td>75 (91.50)</td>
<td>82 (100)</td>
</tr>
<tr>
<td>Total</td>
<td>15 (15.00)</td>
<td>85 (85.00)</td>
<td>100 (100)</td>
</tr>
</tbody>
</table>

The incidence of CRBSI in patients with low haemoglobin level was 21%, this was much higher than just 5.3% in those with normal haemoglobin level (cut off>11g%) (p=0.033) as shown in (Table 7)

Table 7 Association between haemoglobin (gm%) and primary infection

<table>
<thead>
<tr>
<th>Haemoglobin (gm%)</th>
<th>Primary Infection</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Growth</td>
<td>No growth</td>
</tr>
<tr>
<td>7 to 11</td>
<td>13 (21.0)</td>
<td>49 (79.0)</td>
</tr>
<tr>
<td>> 11</td>
<td>2 (5.30)</td>
<td>36 (94.70)</td>
</tr>
<tr>
<td>Total</td>
<td>15 (15.00)</td>
<td>85 (85.00)</td>
</tr>
</tbody>
</table>

136
RESULTS

Results were interpreted as primary, secondary bacteremia and colonization as recommended by Tokars et al. 6

A) Incidence- the incidence of primary bacteremia (CRBSI), secondary bacteremia and colonization were found to be 15%, 5% and 8% respectively as shown in (Table 1)

B) Risk factors - femoral vein was used for catheter insertion in 17 patients as compared to Internal jugular vein (IJV) in 82 patients. CRBSI was higher (29.4%) with femoral vein usage as compared to 12.2% with IJV as shown in (Table2)

C. Causative bacteria- Gram positive cocci (GPC) were the most common bacteria causing 67% of of CRBSI with S.aureus and Coagulase negative staphylococcus (CONS), each causing equal number of infections. These findings were supported by the fact that the same organism was isolated from both JoCath tip and blood cultures of the patients. S.aureus showed 100% sensitivity to Oxacillin and Vancomycin as shown in (Figure-1).

E.coli was isolated from 4 (80%) out of 5 cases of secondary bacteremia with 2 isolates being ESBL (Extended spectrum beta lactamase producing) and all were 100% sensitive to Carbenem and Cefazidime-clavulanic acid combination as shown in (Table 8)

![Fig. 1: Association of organisms with Different infections](image-url)

Table 8: Antibiotic sensitivity pattern of gram positive Cocci (in %) isolated from primary infection

<table>
<thead>
<tr>
<th>Antibiotics Tested</th>
<th>Bacteria</th>
<th>S aureus (n=5)</th>
<th>CONS (n=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sensitive</td>
<td>Resistant</td>
<td>Sensitive</td>
</tr>
<tr>
<td>Penicillin</td>
<td>0.00</td>
<td>100.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Oxacillin</td>
<td>100.00</td>
<td>0.00</td>
<td>80.00</td>
</tr>
<tr>
<td>Cefazoline</td>
<td>60.00</td>
<td>40.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>40.00</td>
<td>60.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>0.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>100.00</td>
<td>0.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>0.00</td>
<td>100.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

DISCUSSION

Catheter related bacteremia (CRB) is a major cause of morbidity and mortality in hemodialysis patients. 19 In the present study, definitive diagnosis of CRB was made by a combination of the clinical condition of the patient with result of blood cultures obtained from both peripheral vein and CVC, the observations being supported by catheter tip cultures.

Over the years, various workers have reported an incidence of CRBSI ranging from 5-49%. In our study the incidence of CRBSI was 15% which was similar to studies by Hung et al (21.4%)10, Powe et al (11.7%)10 and Kairitis et al (16%).2

CRBSI was higher with catheter in femoral vein as compared to IJV. This correlated with study by Oliver et al11 thus proving femoral to be less favourable than IJV.

Sex was not found to be a significant risk factor in our study in contrast to the Saxena et al12 study.

Our finding that age was not a risk factor for CRBSI differs from the studies which found age to be a significant risk factor10,12 though Hoen et al13 did not find it a significant parameter. Results related to the age factor in our study could be due to the fact that we had only 14 patients over 60 years of age.

Diabetes was found to be a risk factor for CRBSI in our study as well as in other studies10,12,14 Jean et al14 had found CRBSI in 33% of diabetic patients.

Our findings of hypoalbuminemia and low haemoglobin contributing increased risk of CRBSI matched with studies of Powe et al and Hoen et al15 respectively.

Gram positive cocci(GPC) contributed to majority of CRBSI(67%) in th present study with S.aureus and CONS accounting for 33% each, rest 33.3% by Gram negative bacilli(GNB). That GPCs were the predominant group was in accordance with studies of Abdulrahman et al16(77%) and Hoen et al17 study(68%) though Saxena et al12 showed GNB predominance (54%).

Amongst bacteria causing secondary bacteremia, E.coli (80%) was the commonest followed by Pseudomonas spp. (20%). All E.coli isolates were obtained from urine thus urinary tract was the commonest source in our study in contrast to a study that found lower respiratory tract to be the commonest one.17,18

one of the S.aureus isolates were Methicillin resistant i.e. all were MSSA isolates. This could be attributed to judicious use of higher antibiotics in our HD unit. To conclude, CRB with haemodialysis catheters was found to be significant with Gram positive cocci being the most dominating bacteria in our hospital.
CONCLUSION

Hence it is concluded that the catheters are still playing significant role in bloodstream infections and also there should be judicious use of higher antibiotics in HD unit so as to prevent the emergence of multi-resistant strains.

REFERENCES