SCREENING OF FIFTEEN INDIAN AYURVEDIC PLANTS FOR ALPHA-GLUCOSIDASE INHIBITORY ACTIVITY AND ENZYME KINETICS

ANKITA BACHHAWAT, J, MOHAMED SHAM SHIHABUDEEN AND KAVITHA THIRUMURUGAN*

ABSTRACT
Alpha-glucosidase inhibitory activity of fifteen Indian medicinal plants has been evaluated by in vitro enzyme assay. Methanol extracts of Cyperus rotundus (tubers), Plumbago zeylanica (root), Symplocos racemosa (bark), and Terminalia arjuna (bark) had displayed 100% inhibition with the IC50 value of 3.98 µg/ml, 3.46 µg/ml, 8.16 µg/ml and 0.69 µg/ml, respectively. Bark extract of Terminalia arjuna is highly effective against alpha-glucosidase activity even at nanogram concentration. Plant parts of Piper retrofractum (stem), Zingiber officinale (rhizome), Acorus calamus (rhizome), Picrorhiza kurroa (rhizome), Marsdenia tenacissima (stem), Clerodendron serratum (root), and Rubia cordifolia (root) are not effective and they require high concentration to exhibit inhibition. Potential plants that show maximum inhibition at low concentration (<10 µg/ml) were subjected to kinetic analysis to determine the mode of inhibition of the enzyme. Cyperus rotundus, Symplocos racemosa and Terminalia arjuna exhibited uncompetitive inhibition and Plumbago zeylanica had displayed mixed inhibition to alpha-glucosidase enzyme activity. From the enzyme assay, we infer that Cyperus rotundus, Plumbago zeylanica, Symplocos racemosa and Terminalia arjuna contain potential alpha-glucosidase inhibitors that can be exploited for its use in the treatment of diabetes.

Keywords: Alpha-glucosidase inhibition, Kinetics, Medicinal plants, Diabetes

INTRODUCTION
The world prevalence of diabetes among adults (aged 20–79 years) was 6.4%, affecting 285 million adults (2010), and will increase to 7.7% and 439 million adults by 20301. In India, the number of adults with diabetes was 50.8 million (2010) and will be expected to reach 87 million (2030), with a mean annual increment of 1.8 million1. Type 2 diabetes mellitus (T2DM) is a heterogeneous metabolic disorder, characterized by defects in insulin secretion and insulin sensitivity2. Absolute or relative deficiency of insulin results in hyperglycemia in diabetic individuals3. Delayed insulin secretion immediately after meal leads to sudden surge in blood glucose level known as ‘hyperglycemic spikes’4. This 2-hour post-prandial plasma glucose will range from 140 to 199 mg/dL (impaired glucose tolerance) and then rise to greater than 200 mg/dL in the case of diabetics. Post-prandial phase is associated with macrovascular and microvascular diabetic complications and it is the major independent risk factor for cardiovascular disease (CVD)5. In the evolution of diabetic interventions, there is an effective preventive strategy to treat this risky post-prandial phase: Unabsorbed carbohydrates (oligosaccharides and disaccharides) are bound to the alpha-glucosidase enzymes located in the brush border of the enterocytes of the jejunum in small intestine and on cleavage to monosaccharides, they are immediately absorbed in the upper jejunum causing hyperglycemia4. On administering alpha-glucosidase inhibitors with carbohydrates, they compete with the binding of oligosaccharides and prevent their cleavage to monosaccharides, thereby slowing the digestion process and rise in post-prandial blood glucose level6. Acarbose, voglibose and miglitol are commercial alpha-glucosidase inhibitors that are considered as first-line treatment for diabetic individuals with post-prandial hyperglycemia. On giving them along with other oral hypoglycemic agents like metformin, sulfonylurea improves glycemic control (reduced HbA1c). However, these alpha-glucosidase inhibitors have prominent gastrointestinal side effects like flatulence, diarrhoea, and abdominal discomfort7. This warrants the search for alternative natural herbal medicines that have fewer side effects than the available inhibitors for the treatment of diabetes. The current study aims to evaluate fifteen Indian Ayurvedic medicinal plants for alpha-glucosidase inhibitory activity in vitro. Plants used are Aconitum heterophyllum Wall, Acorus calamus Linn, Clerodendron serratum Linn, Cyperus rotundus Linn, Marsdenia tenacissima (Roxb.) Moon, Mesua ferrea Linn, Nigella sativa Linn, Picrorhiza kurroa Royle ex benth, Piper retrofractum Vahl, Plumbago zeylanica Linn, Rubia cordifolia Linn, Saussurea lappa C.B.C.L., Symplocos racemosa Roxb, Terminalia arjuna (Roxb.) Wight & Arn, Zingiber officinale Rosc. From this study we report that Cyperus rotundus, Plumbago zeylanica, Symplocos racemosa and Terminalia arjuna have the most potent alpha-glucosidase inhibiting components since they show maximum inhibition even at nanogram and microgram quantities. Kinetic analysis done on these plants showed that Plumbago zeylanica exhibited a mixed (non-competitive- uncompetitive) type of inhibition, whereas the other three plants inhibited the enzyme in an uncompetitive manner. This study shows that these plants contain potential alpha-glucosidase inhibitors which can be exploited further for the isolation of active components used in the treatment of diabetes.

MATERIALS AND METHODS
Materials
The plant materials were purchased from Amman Ayurvedic shop, Vellore, India and ground to yield a powdered form for solvent extraction. p-Nitrophenyl-α-D-glucopyranoside (PNPG), Yeast alpha-glucosidase (EC 3.2.1.20), sodium phosphate salts and sodium carbonate were purchased from Sisco (SRL), India. The 96-well microplate reader was purchased from Bio Tek USA Inc. and Voglibose tablets (2 mg) were purchased from Bayer Pharma.

Plant background
Grounded plant parts (250 g) were extracted using methanol (250 ml) in Soxhlet apparatus for 8 hours. Then, the extract was evaporated to dryness and the final dry crude extract was stored in dark at -20°C until used for the experiments. The standard drug, Voglibose was dissolved in distilled water, centrifuged at 6000 rpm and the supernatant was taken and appropriately diluted.

Aconitum heterophyllum Wall, Ranunculaceae, Atishvaa (Sanskrit)
The plant is commonly found in alpine and sub-alpine region of the Himalayas at altitudes between 1,800-4,500 m. The roots of the plant have medicinal properties. Various butyrylcholinesterase and acetylcholinesterase inhibitors were extracted from the roots of the plant8. Norterpenoid alkaloids were extracted from the roots of these plants having antibacterial activity9. Ethanolic extracts of this plant stimulates phagocytic function while inhibiting the humoral component of the body’s immune system, thus acting as an immunomodulator10.
Acorus calamus, Lin, Araceae, Vacha (Sanskrit)

Pectic polysaccharide obtained from this plant activates macrophages and stimulate TH1 response21. Ethanolic extract of the leaves promoted wound-healing activity in rats33. An inhibitory effect of the aqueous extract on water-bloom forming species of algae has been indicated14. Ethyl acetate extracts showed insulin releasing and alpha-glucosidase inhibitory activity15 and they published IC50 value of 0.41 µg/ml.

Clerodendron serratum, Lin, Verbenaceae, Bharangi (Sanskrit)

Ethanolic extract of the roots of Clerodendron has hepatoprotective activity against carbon tetrachloride induced toxicity in rats33. Alcoholic extract of the roots of this plant has anti-inflammatory activity20. It was also shown to have anti-inflammatory and antipyretic activity in animal model.

Cyperus rotundus, Lin, Cyperaceae, Musta (Sanskrit)

The rhizome of this plant has been reported to play a major role in the protection of neurodegenerative disorders due to its antioxidant and free radical scavenging activity17. Ethanolic extract of this plant has analgesic properties28. Hydro-alcoholic extract of this plant displaying antiviral effect against Herpes Simplex21. Hydro-ethanolic extract of Cyperus reduces blood glucose levels significantly in alloxan-induced diabetic rats29. Ethanol extract of aerial parts of this plant showed marked protection against convulsions induced by chemo convulsive agents in mice21.

Marsdenia tenacissima (Roxb.,) Moon, Asclepiadaceae, Madhurasa (Sanskrit)

A significant antitumor effect of this herb has been reported in experimental and clinical applications22. Novel pregnane glycosides were isolated from roots of this plant23. Tenacinogen derived from this plant had shown to reverse multidrug resistance in cancerous cells24.

Mesua ferrea, Lin, Clusiaceae, Nagakasa (Sanskrit)

Estrogenic and gestational activity of this plant on mice and humans has been reported25. Recently it has been shown that Calophyllolide isolated from Mesua is effective in reducing the increased capillary permeability (induced in mice by Histamine, 5-HT and bradykinin). Main use of stamen has been described to control bleeding in menstragation and piles. Xanthones, a number of 4-phenylcoumarin derivatives, friedelin and triterpenes have been isolated from the plant. Xanthones are isolated from the heartwood coumarin derivatives from the seeds; canophyll, canophyliol and canophylic acid from the leaves.

Nigella sativa, Lin, Ranunculaceae, Kalongi (Sanskrit)

Volatile oil extracted by hydro-distillation contains thymoquinone (2.8 %) which is involved in anti-inflammatory activities in vivo and in vitro26 and the therapeutic potential of thymoquinone in pancreatic cancer has been proved27. It also showed its potential adjuvant effects to improve immunotherapy in the treatment of allergic Rhinitis28. Fixed oil and water extract of this plant (0.1% v/v) has shown to considerably reduce formation of sickle cells due to its calcium antagonistic and antioxidant activities29. Oral administration of the ethanol extract of N. sativa seeds to diabetic rats reduced hyperglycemia30. Methanolic extract of Nigella significantly inhibits glucose utilisation in the intestine of rats31. Petroleum ether extract of the seeds of this plant has shown to exert insulin sensitising action. N. sativa treatment in streptozotocin-induced diabetic rats reduced lipid peroxidation and serum nitric oxide levels to a significant level by increasing antioxidant enzyme32. Oil extracted from the plant blocks nitric oxide overproduction and ceases morphine-induced tolerance and dependence in mice33. Methanolic extracts of this plant possess potent CNS depressant and analgesic activity34.

Picrorhiza kurroa, Royle ex benth, Scrophulariaceae, Katuka (Sanskrit)

A glycoside, picroliv isolated from this plant is hepatoprotective. It has choleretic and anti-cholestatic effects in rats and guinea pigs35. It also has anti-viral and immuno-modulatory effect. Picroliv restored cadmium induced abnormalities in the liver of male rats36. It has anti-inflammatory, anti-carcinogenic37 and antioxidant effects38. Methanolic extract of the plant has heating potential in indomethacin induced stomach ulcers in mice39. Tannins derived from the plant inhibit cyclooxygenase and lipid peroxidation40.

Piper retrofractum, Vahl, Piperaceae, Chayava (Sanskrit)

Aqueous extracts of the plant have potent larvicidal activity41. Ethanolic extract of the plant has larvicidal and insecticidal properties42. Fruits of this plant have potent anti-bacterial and anti-fungal properties43. Phenolic amides obtained from the plant have potent antioxidant properties44.

Plumbago zeylanica, Lin, Plumbaginaceae, Chitraka (Sanskrit)

Plumbagin isolated from this plant possess significant anticancer activity45 and anti-inflammatory effects46. Hexane and chloroform extract of this plant has significant larvicidal activity47. Acetone and methanolic extracts of the leaves of this plant had reversible concentration dependent oestrogenic and anti-oestrogenic activity48. Methanolic extract of the root of this plant showed promising antioxidant activity49.

Rubia cordifolia, Lin, Rubiaceae, Manjistha (Sanskrit)

Anti-oxidative constituents were isolated from ethyl acetate extract of this plant50. Alcoholic extract of this plant increased brain gamma-aminobutyric acid levels and decreased brain dopamine and plasma corticosterone levels51. The extract also inhibited acidity and ulcer formation, decreased blood sugar level in alloxa treated animals52.

Saussurea lappa, C.B.C.L. Asteraceae, Kustha (Sanskrit)

Anti-hepatotoxic activity of the aqueous-methanol root extract has been reported in mice53. Ethanol extract of this plant inhibited Streptococcus mutans in a dose dependent manner53. The plant contains cholinergic and a calcium antagonist ingredient which is helpful for use in constipation and spasm54. Antifungal constituents were isolated from the roots of the plant55.

Symlocos racemosa, Roxb. Symlocaceae, Lothra (Sanskrit)

Glycosides isolated from this plant are reported to inhibit thymidine phosphorylase whose overexpression is linked to angiogenesis56. New phenolic glycosides of salpinein series in the n-butanol fraction of the bark of S. racemosa has been isolated57. Ethyl substituted glycoside that inhibits lipoxigenase and phenolic glycoside that inhibits human nucleotide pyrophosphatase phosphodiesterase has been identified58.

Terminalia arjuna, Roxb. Wight & Arn. Combretaceae, Arjuna (Sanskrit)

This plant is widely known to prove comprehensive relief to the people suffering from cardiovascular diseases, especially hyperlipidemia and ischemic heart disease. Some important findings related to the above mentioned activity has been studied59. Anti-inflammatory, immuno modulatory and anti-inflammatory activity of the bark in mice and rats has been studied60. T. arjuna bark extract attenuated catecholamine-induced myocardial fibrosis and oxidative stress61. It has antimicrobial activity against multi drug resistant (MDR) strains of fungi and bacteria of clinical origin61. Oleanane-type triterpene glycosides have been isolated and they suppress the release of nitric oxide and superoxide from macrophages and also inhibit aggregation of platelets63. The effect of T. arjuna extract on adriamycin-induced microcule formation in cultured human peripheral blood lymphocytes has been studied64. T. arjuna has been found to be useful in patients associated with ischemic heart disease65.

Zingiber officinale Rosc. Zingiberaceae, Sunthi (Sanskrit)

Fractions obtained from the rhizome of this plant show anti-microbial and antioxidant effects66. A formulation of the plant was effective in controlling alcohol hangover symptoms67. Dried fermented ginger improved intestinal function68. Ethanolic extract of...
this plant had remarkable inhibitory activity against multi-drug resistant bacterial and fungal strains\(^7\). The plant has larvicidal constituents\(^7\) and anti-invasive property of the constituents of the plant in hepatocarcinoma cells has been studied\(^7\). Ginger promoted glucose transport in muscle cell line\(^3\). The protective action of ginger oil on gastric ulcer induced by aspirin in rats has been investigated\(^4\). Ethanolic extract of ginger has protective effect against renal damage induced by alcohol\(^5\). Aqueous extract of ginger rhizome produced significant increase in insulin levels and decrease in fasting glucose levels in diabetic rats\(^6\). Treatment with the extract also caused reduction in serum cholesterol levels, blood pressure and serum triglycerides in diabetic rats.

Inhibition assay for alpha-glucosidase activity

Alpha-glucosidase inhibition was analysed using kinetic end-point assay described by Pistia Brueggeman with few modifications. Alpha-glucosidase inhibitory activity was performed following the modified method of Pistia Brueggeman and Hollingsworth\(^7\). In a 96-well plate reader, a reaction mixture containing 50 μl of phosphate buffer (50 mM; pH 6.8), 10 μl of α-glucosidase (1 U/ml) and 20 μl of plant extract of varying concentrations was pre-incubated for 5 min at 37°C, and then 20 μl of 1 mM PNPG was added to the mixture as a substrate. After further incubation at 37°C for 30 min, the reaction was stopped by adding 50 μl of sodium carbonate (0.1M). All the enzyme, inhibitor and substrate solutions were made using the same buffer. Voglibose was used as a positive control and water as negative control. The yellow colour produced (due to p-nitrophenol formation) was quantitated by colorimetric analysis and reading the absorbance at 405 nm. Each experiment was performed in triplicates, along with appropriate blanks.

The % inhibition has been obtained using the formula:

\[
\% \text{ inhibition} = \frac{(\text{Absorbance (control)} - \text{Absorbance (sample)})}{\text{Absorbance (control)}}
\]

IC\(_{50}\) value is defined as the concentration of extract inhibiting 50% of alpha-glucosidase activity under the stated assay conditions. In case of significant inhibition, IC\(_{50}\) values were determined based on the results from inhibitory activity assay as described earlier.

Kinetics of alpha-glucosidase inhibition

The mode of inhibition of plant extracts against alpha-glucosidase activity was measured with increasing concentrations of PNPG (0.125, 0.25, 0.5 and 1 mM) as substrate in the absence or presence of the plant extracts at two different concentrations for each plant extract. The enzyme reaction was performed by incubating the mixture at 37°C for 30 min and optimal doses of the plant extracts were determined based on the results from inhibitory activity assay as described earlier. Mode of inhibition of plant extracts was determined by Lineweaver-Burk plot analysis of the data calculated following Michaelis-Menten kinetics\(^7\). Experimental inhibitor constant (K\(_i\)) values were determined by secondary plots. The theoretical value of K\(_i\):

\[
K_i = \frac{V_{\text{max}}}{1/(V_{\text{max}} - V_{\text{in}})}
\]

RESULTS AND DISCUSSION

Extracts obtained from several Ayurvedic plants have been reported for their anti-diabetic activity. But these plants have not been evaluated for the mechanism of action to control blood glucose level. In the present study, fifteen Indian Ayurvedic medicinal plants were evaluated for their alpha-glucosidase inhibitory potential. Plants used in this study along with the parts used and inhibition values are listed in Table 1. Before our study, except Acorus, none of the other plants have been studied for their alpha-glucosidase inhibitory effect \textit{in vitro}. On screening 15 plant extracts, 4 extracts exhibited 100% inhibition, while 10 extracts showed 10-100% AGI activity (10-100%). Only one extract (Acorus calamus) showed less than 10% inhibition. Voglibose, an available drug for alpha-glucosidase inhibition showed IC\(_{50}\) value of 2.19±2.91 μg/ml.

Extracts with 100% inhibitory effect on the alpha-glucosidase inhibition at 100 μg/ml

The extracts of Terminalia arjuna, Plumbago zeylanica, Cyperus rotundus, Symplocos racemosa had displayed 100% inhibition at the concentration of 100 μg/ml (Table 1 and Fig. 1). The bark extract of Terminalia arjuna was the most potential inhibitor of the enzyme based on the IC\(_{50}\) value (0.69 μg/ml). On comparison to the control drug Voglibose with the IC\(_{50}\) value of 21.98±2.91 μg/ml, all these four plants displayed maximum inhibition at lower concentrations.

Extracts with 40-100% inhibitory effect on the alpha-glucosidase inhibition

The extracts of Mesua ferrea and Aconitum heterophyllum had shown moderate potency of 45.9% and 40.3% at 100 μg/ml, respectively.

Extracts with 10-40% inhibitory effect on the alpha-glucosidase inhibition

The extracts of the following plants showed inhibition against alpha-glucosidase at 100 μg/ml. \textit{Nigella sativa} (28.7%), \textit{Rubia cordifolia} (29.7%), \textit{Clerodendron serratum} (32.3%), \textit{Marsdenia tenacissima} (22.1%), \textit{Picrorhiza kurroa} (26.2%), \textit{Saussurea lappa} (19.9%), \textit{Zingiber officinale} (16.9%), and \textit{Piper retrofractum} (15%).

Table 1: Inhibitory effect of plant extracts on alpha-glucosidase (Positive control: Voglibose (21.98±2.91 μg/ml))

<table>
<thead>
<tr>
<th>Botanical name</th>
<th>Family</th>
<th>Parts used</th>
<th>Percentage inhibition at 100 μg/ml</th>
<th>IC(_{50}) (μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aconitum heterophyllum</td>
<td>Ranunculaceae</td>
<td>Rhizome</td>
<td>40.3</td>
<td>166.5±13.63</td>
</tr>
<tr>
<td>Acorus calamus</td>
<td>Araceae</td>
<td>Rhizome</td>
<td>7.5</td>
<td>401.06±15.96</td>
</tr>
<tr>
<td>Clerodendron serratum</td>
<td>Verbenaceae</td>
<td>Root</td>
<td>32.3</td>
<td>264.66±9.92</td>
</tr>
<tr>
<td>Cyperus rotundus**</td>
<td>Cyperaceae</td>
<td>Tubers</td>
<td>100</td>
<td>3.98±0.55</td>
</tr>
<tr>
<td>Marsdenia tenacissima</td>
<td>Asclepiadaceae</td>
<td>Stem</td>
<td>22.1</td>
<td>2.98±3.43</td>
</tr>
<tr>
<td>Mesua ferrea</td>
<td>Clusiaceae</td>
<td>Dried buds</td>
<td>45.87</td>
<td>128.75±7.9</td>
</tr>
<tr>
<td>Nigella sativa</td>
<td>Ranunculaceae</td>
<td>Seeds</td>
<td>28.7</td>
<td>172.81±12.6</td>
</tr>
<tr>
<td>Picrorhiza kurroa</td>
<td>Scorfulariaceae</td>
<td>Rhizome</td>
<td>26.2</td>
<td>313.53±10.84</td>
</tr>
<tr>
<td>Piper retrofractum</td>
<td>Piperaceae</td>
<td>Stem</td>
<td>15.0</td>
<td>670.24±32.97</td>
</tr>
<tr>
<td>Plumbago zeylanica**</td>
<td>Plumbaginaceae</td>
<td>Root</td>
<td>100</td>
<td>3.46±0.53</td>
</tr>
<tr>
<td>Rubia cordifolia</td>
<td>Rubiaceae</td>
<td>Root</td>
<td>29.7</td>
<td>2.53.42±4.88</td>
</tr>
<tr>
<td>Saussurea lappa</td>
<td>Asteraceae</td>
<td>Rhizome</td>
<td>19.9</td>
<td>401.76±5.17</td>
</tr>
<tr>
<td>Symplocos racemosa**</td>
<td>Symplocaceae</td>
<td>Bark</td>
<td>100</td>
<td>8.16±0.28</td>
</tr>
<tr>
<td>Terminalia arjuna**</td>
<td>Combretaceae</td>
<td>Bark</td>
<td>100</td>
<td>0.69±0.08</td>
</tr>
<tr>
<td>Zingiber officinale</td>
<td>Zingiberaceae</td>
<td>Rhizome</td>
<td>16.9</td>
<td>65.33±7.1</td>
</tr>
</tbody>
</table>

** Potential plants showing 100% inhibition.
Following these results, kinetic study has been performed on the four extracts (C. rotundus, P. zeylanica, S. racemosa and T. arjuna) showing 100% inhibition against alpha-glucosidase activity. Lineweaver-Burk (LB) plot has been used to determine the mode of inhibition (Fig. 2A-2D) and experimental inhibitor constant (K_i) values were determined by secondary plots (Fig. 3A-3D). The tuber extract of C. rotundus contains uncompetitive inhibitor(s) of alpha-glucosidase (Fig. 2A and 3A) and there is a reduction of V_max from 1.54 mM.min⁻¹ to 0.67 mM.min⁻¹ and K_m from 2.68 mM to 1.16 mM. The root extract of P. zeylanica has mixed inhibitor(s) of alpha-glucosidase (Fig. 2B and 3B) and there is a reduction in V_max from 1.82 mM.min⁻¹ to 1.28 mM.min⁻¹ and K_m from 3.37 mM to 2.49 mM. The bark extract of S. racemosa (Fig. 2C and 3C) contains uncompetitive inhibitor(s) of alpha-glucosidase and there is a reduction of V_max from 0.41 mM.min⁻¹ to 0.23 mM.min⁻¹ and K_m from 0.73 mM to 0.40 mM. The bark extract of T. arjuna contains uncompetitive inhibitor(s) of alpha-glucosidase (Fig. 2D and 3D) and the V_max reduced from 1.19 mM.min⁻¹ to 0.48 mM.min⁻¹ and the K_m from 2.14 mM to 0.87 mM. The extracts of S. racemosa and T. arjuna requires low substrate concentration to reach half the maximal velocity.

Fig. 2A-2D: Lineweaver-Burk plot for kinetic analysis of alpha-glucosidase inhibition by plant extracts
Yeast alpha-glucosidase was treated with various concentrations of PNPG (0.125-1 mM) in the absence or presence of the extract (Cyperus, Plumbago, Symplocos) at the concentration range 2 μg/ml and 8 μg/ml. In the case of Terminalia, the extract at a concentration of 0.3 μg/ml and 0.6 μg/ml has been used. The enzyme reaction was performed by incubating the mixture at 37°C for 30 min.

Fig. 3A-3D: Secondary plots for the kinetic analysis of alpha-glucosidase by plant extracts

Table 2: Kinetic analysis of alpha-glucosidase inhibition by the plant extracts

<table>
<thead>
<tr>
<th>Extract concentration (μg/ml)</th>
<th>C. rotundus</th>
<th>P. zeylanica</th>
<th>S. racemosa</th>
<th>T. arjuna</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K<sub>m</sub> (mM)</td>
<td>V<sub>max</sub> (mM.min<sup>-1</sup>)</td>
<td>K<sub>m</sub> (mM)</td>
<td>V<sub>max</sub> (mM.min<sup>-1</sup>)</td>
</tr>
<tr>
<td>0</td>
<td>4.099</td>
<td>2.353</td>
<td>4.654</td>
<td>2.639</td>
</tr>
<tr>
<td>2</td>
<td>2.676</td>
<td>1.536</td>
<td>3.373</td>
<td>1.821</td>
</tr>
<tr>
<td>4</td>
<td>1.165</td>
<td>0.669</td>
<td>2.488</td>
<td>1.279</td>
</tr>
</tbody>
</table>

Inhibitor concentration (μg/ml) was plotted on the X-axis and 1/V (mM/min)⁻¹ values obtained from the Lineweaver-Burk plot was plotted on the Y axis. The point on the X-axis where the line intersects the axis is the experimental inhibitor constant (K_i).

Table 2 shows the kinetics of alpha-glucosidase inhibition by the plant extracts. In all the four plants, on increasing the substrate concentration of the extract (from 2 μg/ml to 4 μg/ml), there is a decrease in the values for maximum velocity (V_{max}) and the substrate concentration required to reach half the maximum velocity (K_m).
the enzyme-substrate complex, lowering the K_m and the maximum enzyme activity (V_{max}).

CONCLUSION

Diabetes mellitus is a progressive metabolic disorder affecting majority of the population across the world. There are various manoeuvres to manage and treat this aggravating disease. The main effect of diabetes is increase in glycemic level and therefore to reach normoglycemic level along with insulin and other oral hypoglycemic agents like sulfonylureas, biguanides, Thiazolidinediones (TZD), alpha-glucosidase inhibitors (AGI) and incretin mimetics (GLP-1, GIP, DPP-4 inhibitors) are being used. Alpha-glucosidase inhibitors delay the action of alpha-glucosidases to break complex carbohydrates in to simple sugars, thereby lowering the absorption of glucose. These inhibitors play a vital role in reducing the post-prandial hyperglycemia. As a consequence of their pharmacological action, alpha-glucosidase inhibitors also cause a concomitant decrease in post-prandial plasma insulin and gastric inhibitory polypeptide (GIP) and a rise in late post-prandial plasma glucagon – impaired glucose tolerance with hyperinsulinemia, alpha-insulin sensitivity. Post-prandial hyperglycemia contributes to fasting hyperglycemia. As a consequence of their pharmacological delay the action of alpha-glucosidases to break complex carbohydrates.

Diabetes mellitus is a progressive metabolic disorder affecting majority of the population across the world. There are various manoeuvres to manage and treat this aggravating disease. The main effect of diabetes is increase in glycemic level and therefore to reach normoglycemic level along with insulin and other oral hypoglycemic agents like sulfonylureas, biguanides, Thiazolidinediones (TZD), alpha-glucosidase inhibitors (AGI) and incretin mimetics (GLP-1, GIP, DPP-4 inhibitors) are being used. Alpha-glucosidase inhibitors delay the action of alpha-glucosidases to break complex carbohydrates in to simple sugars, thereby lowering the absorption of glucose. These inhibitors play a vital role in reducing the post-prandial hyperglycemia. As a consequence of their pharmacological action, alpha-glucosidase inhibitors also cause a concomitant decrease in post-prandial plasma insulin and gastric inhibitory polypeptide (GIP) and a rise in late post-prandial plasma glucagon – impaired glucose tolerance with hyperinsulinemia, alpha-insulin sensitivity. Post-prandial hyperglycemia contributes to fasting hyperglycemia. As a consequence of their pharmacological delay the action of alpha-glucosidases to break complex carbohydrates.

Therefore, we have screened potential anti-diabetic plants for alpha-glucosidase inhibition. From the study we have identified Cyperus rotundus, Plumbago zeylanica, Symposcos racemosa and Terminalia arjuna for potential alpha-glucosidase inhibitory activity compared to the standard (voglibose). Particularly, Terminalia arjuna is effective even in nanogram quantities. Therefore, our plan is to investigate its efficiency in vivo using animal models. Kinetic studies performed on these effective plants exhibit uncompetitive inhibition for Cyperus rotundus, Symposcos racemosa and Terminalia arjuna. This indicates that the substrate binding could cause a conformational change to take place in the enzyme such that it reveals an inhibitor binding site. Plumbago zeylanica exhibited non-competitive-uncompetitive inhibition. This indicates that the inhibitor constant for free enzyme is lesser than the inhibitor constant for enzyme-substrate complex. Also, the binding of the inhibitor to the free enzyme or the enzyme-substrate complex is mutually independent.

Competing interests

The authors have no conflicting interests.

Authors’ contribution

AB carried out the in vitro enzyme assay, kinetic analysis, prepared figures, and drafted the manuscript. MSS has contributed in standardizing the assay and figure preparation. KT conceived of the study, designed, involved in preparing the manuscript and interpretation. All authors read and approved the final manuscript.

ACKNOWLEDGEMENT

We would like to thank VIT University, Vellore- India for providing the financial assistance to carry out this research work.

REFERENCES

