PRELIMINARY EVALUATION OF THE HEPATIC PROTECTION BY PHARMACOLOGICAL PROPERTIES OF THE AQUEOUS EXTRACT OF ASPARAGUS RACEMOSUS IN LEAD LOADED SWISS ALBINO MICE

VEENA SHARMA1*, RITU B VERMA1, SHATRUHAN SHARMA2

Department of Biotechnology, Banasthali University, Banasthali 304022, Rajasthan, India, MAI-Jaipur-12, Rajasthan2
Email: veena.sharma61@gmail.com, drvshs@gmail.com

Received: 15 May 2011, Revised and Accepted: 18 Oct 2011

ABSTRACT

The aqueous extract from the roots of Asparagus racemosus (ARRE) was evaluated for lead detoxification from the hepatic tissue by the oral administration route in mice. The toxic effects of lead were studied simultaneously on hepatic biochemical and also on histopathological parameters. The experiment design with thirty-six male Swiss albino mice with the average weight 29 g, were divided into six experimental Groups and each group with six mice. Group I – (Control; Without any treatment), Group II - (Lead nitrate;20 mg/Kg body weight, orally) Group III- (ARRE; 50mg/Kg body weight, orally) Group IV- (ARRE; 150mg/Kg body weight, orally) Group V- (Lead nitrate;20 mg/Kg body weight, orally+ ARRE; 50mg/Kg body weight, orally) Group VI- (Lead nitrate;20 mg/Kg body weight, orally +ARRE; 150mg/Kg body weight, orally) respectively treated for 45 days. The effect of long-term administration of lead nitrate and ARRE independently and both in combination on lipid peroxidation (LPO) and antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GSH), and glutathione-S-transferase (GST) was studied in hepatic system of Swiss albino mice. The study also concerns on effect of ARRE in lead loaded mice in hepatic enzymes (AST, ALT, and ALP), total and direct bilirubin and albumin level as a marker of liver damage. The results showed the significant hepatoprotective effects of ARRE on lead loaded mice as compared with control to some extent. Lead nitrate administration caused significant depletion of the level of SOD, CAT and reduced GSH, along with the increased level of Lipid peroxidation where as ARRE administration caused significant recovery in all the parameters. AST, ALT, ALP and bilirubin level were also negatively affected in lead treated group and significantly increased in ARRE treated groups. The total protein and albumin level revealed significantly increased in ARRE treated groups and decreased in lead treatment. The hepatic system showed hepatocyte pycnosis, vacuolation, blood congestion and high lymphocytic infiltration around the central vein. Results suggest that beneficial effect of aqueous ARRE may be, probably due to its antioxidant properties.

Keywords: Lead Nitrate, Asparagus racemosus, Hepatic system, Oxidative enzymes, Liver markers, Mice.

INTRODUCTION

Lead poisoning is a medical condition, also known as saturnism, plumism or painter’s colic, caused by increased in lead in blood levels, and may cause irreversible neurological damage, hepatic, renal, cardiovascular and reproductive toxicity. The systemic toxic effects of lead in humans have been well-documented by the EPA1-3 and ATSDR4. The evidence shows that lead is a multi-targeted toxicant, causing harmful effects on various organ systems in human body. Hepatic damage caused by chronic iron overload is attributed to heightened production of reactive oxygen species. Normally, the free radical level in the body is low because healthy organisms can neutralize, metabolize, or subtract the toxic effects by free radical scavengers such as superoxide dismutase and catalase5. Liver diseases remain as one of the serious health problems. However we do not have satisfactory liver protective drugs in allopathic medical practice for serious liver disorders. Herbal drugs play a role in the management of various liver disorders most of which speed up the natural healing processes of the liver6-9. Numerous medicinal plants and their formulations are used for liver disorders in ethnomedical practice as well as traditional system of medicine in India9. Asparagus racemosus Wild (Asparagaceae), commonly known as Satavari (Hindi) is a perennial shrub, with a tuberous root-stock, stems covered with recurved spines, linear leaves arranged in a tuft, white flowers, sweet-scented appear in October10. Asparagus racemosus is recommended in Ayurvedic texts for prevention and treatment of various human ailments. The decoction of root has been used in blood diseases, diarrhoea, dysentery, cough, bronchitis and general debility11-13.

Reports indicate that the pharmacological activities of root extracts include antiulcer14, anti-tussive15, antioxidant16 and antibacterial activities17.

However, till date no work has been reported on the hepatoprotective properties of this plant. Keeping this perspective, the present study was undertaken to investigate hepatoprotective activity and antioxidant role of the aqueous extract of Asparagus racemosus on lead nitrate loaded male mice.

MATERIAL AND METHODS

Chemicals

Lead nitrate was purchased from Central Drug House (India). All other chemicals were of analytical grade and obtained from Sisco Research Laboratories (India), Qualigens (India/Germany), SD Fine Chemicals (India), HIMEDIA (India), and Central Drug House (India).

Plant collection and extraction

The plant Asparagus racemosus (Family: Asparagaceae) was collected in the month of October from Krishi Vigyan Kendra of Banasthali University, Rajasthan, India. The plant material was taxonomically identified by a plant taxonomist of our Institute. The roots of the whole plant were thoroughly washed with distilled water, shade dried to get constant weight and cut into small pieces and powdered with a mechanical grinder to obtain a coarse powder. Known quantity (5 g) of the powered material was extracted using distilled water (500ml) as a solvent. The extract was then filtered through filter paper and concentrated on a water bath at 40-50°C. Finally after complete evaporation of the solvent, the residue (3.089 g) was weighed and stored at 4°C and was used to treat the animals as needed.

Experimental animals

Male Swiss albino mice weighing approximately 15-30 g (2-2.5 months old) were obtained from Harayana Agricultural University, Hisar, India. The Animal Ethics Committee of Banasthali University, Banasthali, India approved the study. All experiments were conducted on adult male albino mice when they weighed 25-35 g (3-4 months old). Thirty six adult male Swiss albino mice were left for 2 weeks before experimentation to adapt to laboratory conditions. The animals were grouped and housed in polycrylic cages (38 x23 x10 cm) with not more than six animals per cage and maintained under
standard laboratory conditions (temperature 25° ± 20°C) with dark and light cycle (12/12 h). Throughout the experiment the animals were provided standard food pellet (Hindustan level Ltd) and water ad libitum. Essential cleanliness and sterile conditions were also maintained.

Experimental design
In the present study 36 adult male Swiss albino mice (Mus musculus) weighing 25-30 g (3-4 month old) were used for the hepatic biochemical and histological studies. The groups for each parameter were treated by oral gavage once daily for 45 days as follows.

Group I - Control animals; Untreated or normal group, animals were given normal diet and distilled water.

Group II - Lead Nitrate: (LN); treated group, animals were treated with freshly dissolved lead nitrate in 1 ml distilled water at a dose of 20 mg/kg body weight/day.

Group III- Asparagus racemosus aqueous root extract: (ARRE-1); treated group, animals were treated with freshly dissolved plant extract in 1 ml distilled water at a dose of 50 mg/kg body weight/day.

Group IV- Asparagus racemosus aqueous root extract: (ARRE-2); treated group, animals were treated with freshly dissolved plant extract in 1 ml distilled water at a dose of 150 mg/kg body weight/day.

Group V - (LN+ARRE-1); treated group, animals were treated with lead nitrate in 1 ml distilled water at a dose of 20 mg/kg body weight/day + Asparagus racemosus aqueous root extract at a dose of 50 mg/kg body weight/day (after 60 min).

Group VI - (LN+ARRE-2); treated group, animals were treated with lead nitrate in 1 ml distilled water at a dose of 20 mg/kg body weight/day + Asparagus racemosus aqueous root extract at a dose of 150 mg/kg body weight/day (after 60 min).

All these groups of mice i.e. group II to VI served as treated groups against group I as a control. The dose for lead nitrate was decided according to Plastunov earlier published reports. The plant doses were selected on the basis of concentration of lead nitrate was decided according to Plastunov against group I as a control. The dose for lead nitrate was decided on earlier published reports. The concentration of pyrogallol was adjusted in such a way that the rate in change of absorbance per 2 min was approximately 0.020-0.023 optical density units. Liver extract (200 µl) was treated with 10% of 25% triton X-100 and kept at 4°C for 30 min.

For sample: Tris buffer (2.8 ml), 0.1 ml of treated sample was added and mixed, and the reaction was initiated by adding 0.1 ml of adjusted pyrogallol solution (as control). Reading was taken at 420 nm after 1.5 and 3.5 mins and the difference in absorbance was recorded. The enzymatic activity was expressed as U/ml of liver extract and 1 U of enzyme is defined as the enzyme activity that inhibits auto-oxidation of pyrogallol by 50%.

Estimation of CAT level
Catalase (CAT) activity was estimated following the method of Aebi (1974). Liver extract (100 µl) was treated with ethanol (10 µl) and placed on an ice bath for 30 min. To this, 10 µl of 25% triton X-100 was added and again kept for 30 min on ice. To 200 µl phosphate buffer (0.1 M), 50 µl of treated liver extract and 250 µl of 0.066 M H₂O₂ (prepared in 0.1 M phosphate buffer, pH 7.0) was added in a cuvette. The decrease in optical density was measured at 240 nm for 60 s. The molar extinction coefficient of 4.36 cm⁻¹ was used to determine CAT activity. One unit of activity is equal to the moles of H₂O₂ degraded/min/mg protein.

Estimation of GSH level
GSH was estimated by a colorimetric method of Jollow (1974). The known homogenate suspension (1ml) was deproteinized by addition of an equal volume of 4% sulphosalicylic acid, kept it at 4°C for 1 h. After centrifugation at 8000 rpm for 15 min at 4°C, resulting supernatant (100 µl) was added in phosphate buffer for appropriate dilution. To this 200 µl Ellman’s reagent was added. Without sample test tube and rest assay mixture test tube was used as blank. GSH was preposition to the absorbance at 412 nm. The GSH activity is calculated with extinction coefficient of Ellman’s reagent.

Estimation of GST level
In brief, GST activity of hepatic tissue was determined by the method of Habig (1974). The total reaction mixture contained 1.65ml phosphate buffer, 0.2ml 1mM GSH (in PB), and 50 µl 1mM CDNB. The reaction was initiated by the addition of 100 µl of sample. The absorbance was read at 30s, 1 min, 2 min, 3 min interval at 340nm. The reaction mixture without the enzyme was used as blank. The specific activity of GST is expressed as µmol of GSH-CDNB conjugate formed min⁻¹ mg protein⁻¹ using an extinction coefficient of 9.6mM⁻¹cm⁻¹.

Cellular metabolic enzymes assay
All cellular enzymatic activities ALT, AST, and ALP were estimated with the help of Erba kits, Mannheim, transasia. The ACP level was estimated by the protocol given in practical book of Sadhashivam (1996).

Total Protein estimation
The protein content was determined using bovine serum albumin as a standard by the method of Lowry. The protein content was determined using bovine serum albumin as a standard by the method of Lowry.

Assessment of Markers of Hepatotoxicity
The other hepatic damage markers (Albumin & Bilirubin) were also studied with the help of Erba, Mannheim, transasia Kits.
Histopathological/Histological Study

Microtomy of hepatic tissue was done according to the method of McManus and Mowry (1965). Tissue was processed by routine histological techniques. Tissue was sectioned (3 μm) and stained with hematoxylin & eosin (H & E). Finally, stained sections were examined under the light microscope and subsequently micrographs were taken.

Statistical analysis

Results are expressed as the mean ±SEM. The data were analyzed by analysis of variance (ANOVA) followed by Tukey test using the Statistical Package for the Social Sciences (SPSS, 16). The level of significance was set at p<0.05.

RESULTS

Effect on body weight and organ weight

The total body weight of the mice was increased almost in all groups, except lead treated mice. This increased level was significant (P<0.001) as compared to lead treated mice but this significance was higher in individual administration of plant extract doses (ARRE), rather than co-current treatment. Lead also influenced the weight of liver organ respectively (P<0.001). On the other hand plant treatment improved the hepatic weight in comparison to group II animals (Table 1).

Effect on hepatic indicators

<table>
<thead>
<tr>
<th>Groups</th>
<th>Initial Body weight (g)</th>
<th>After treatment Final body weight (g)</th>
<th>Tissue weight (g)</th>
<th>HEPATIC TISSUE</th>
<th>GSH (µmol GSH-CDNB conjugate formed/min/ mg protein)</th>
<th>GST (µmol GSH-CDNB conjugate formed/min/ mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>101.17 ± 0.85</td>
<td>94.40 ± 0.80</td>
<td>4.97 ± 0.32</td>
<td>12.74 ± 0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Nitrate (LN)</td>
<td>241.62 ± 1.74</td>
<td>204.94 ± 1.82</td>
<td>2.24 ± 0.21</td>
<td>66.38 ± 1.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARRE-1</td>
<td>65.08 ± 1.34</td>
<td>62.86 ± 1.29</td>
<td>4.95 ± 0.25</td>
<td>105.02 ± 0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARRE-2</td>
<td>60.63 ± 0.70</td>
<td>39.84 ± 1.78</td>
<td>5.10 ± 0.14</td>
<td>108.40 ± 0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LN+ ARRE-1</td>
<td>124.57 ± 1.51</td>
<td>111.22 ± 1.29</td>
<td>2.20 ± 0.12</td>
<td>93.18 ± 2.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LN+ ARRE-2</td>
<td>105.01 ± 1.31</td>
<td>92.73 ± 1.88</td>
<td>2.34 ± 0.24</td>
<td>94.40 ± 1.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: Values are expressed as the mean ± SEM for n=6 mice per group. *change with respect to control group I, †change with respect to lead treated group II, §change with respect to initial weight, b & d; used to show different levels of statistically significant; d= p<0.001, *ns= not significant change with respect to control group I, †ns= not significant change with respect to toxicant treated group II, ns= not significant change with respect to both group, control group I and toxicant treated group II.

Effect on Lipid peroxidation level, Antioxidant enzymes, glutathione and total protein contents

Lead was also found to significantly (p<0.001) increase the lipid peroxidation (LPO) level in hepatic tissue. Both dose (low & high) of aqueous ARRE significantly (P<0.001) reduced the LPO level in groups III & IV and group V & VI. The difference between both doses was insignificant. The LPO level was comparatively lower in the groups (G IV & V G VI), which consumed higher concentration of ARRE in comparison to lower concentration of ARRE dose.

Results as shown in Table 2 indicate significant (P<0.001) decrease in the SOD and CAT levels after administration of lead nitrate in comparison to control group I but the level of both the oxidative enzymes was higher in Asparagus racemosus different dose (ARRE 1 and ARRE 2) treated groups (G III, G IV). Interestingly, the enhanced activity of SOD was observed in group III in comparison to group IV and increased CAT activity was observed in group IV rather than group III. ARRE lower dose treated animals. SOD and CAT activities were also noticed in group V & VI, administered with low & high dose of aqueous ARRE along with lead nitrate. The amplified CAT level was significant (p<0.001) in comparison to lead treated animals. SOD alteration level in group V was observed insignificant whereas group VI achieved significant (p<0.02) alteration in comparison to lead treated animals of group II.

While the GSH at GST contents of hepatic tissues were found to be significantly (P<0.001) decreased in lead treated group, when compared with the control group I. The simultaneous administration of ARRE extract with lead, tried to lower the toxicity values. For the GSH and GST level, ARRE higher concentration of the extract showed much alternative results than lower dose in comparison to lead exposed animals. ARRE was found incapable to change the GST level after simultaneous exposure with lead but both the doses of plant significantly (P<0.001) ameliorated the toxic effects of lead nitrate in reducing the GST level.

Table 1: Effect of Lead Nitrate on Body weight & hepatic weight (g)

Table 2: Effect of aqueous ARRE on hepatic oxidative stress, antioxidant enzymes and reduced glutathione on lead induced toxic damage in Swiss albino male mice

Abbreviations: Values are expressed as the mean ± SEM for n=6 mice per group. *change with respect to control group I, †change with respect to lead treated group II, §change with respect to initial weight, b & d; used to show different levels of statistically significant; d= p<0.001, *ns= not significant change with respect to control group I, †ns= not significant change with respect to toxicant treated group II, ns= not significant change with respect to both group, control group I and toxicant treated group II.

Effect on hepatic indicators

Lead nitrate showed a significant (p<0.001) increment in ALT, AST, ALP, ACP and bilirubin (total & direct) in hepatic markers with the significant (p<0.001) declined level in total protein and albumin levels in comparison to control animals group I. The aqueous root extract of *Asparagus racemosus* significantly (p<0.001) declined the level of AST & ALT in groups III & IV when compared with control group I and lead treated group II. ALP reduction significant level (p<0.001) was differ from all these alteration in group III in comparison to control animals but found equally significantly reduced (P<0.001) in comparison to lead treated animals of group II.

The administration of ARRE along with lead nitrate significantly (p<0.001) controlled the level of ALT, AST, ALP and ACP activities in
hepatic tissue of animals of groups V & VI when compared to lead exposed animals. ARRE extract showed significant (P<0.001) increased level of total protein and albumin in group III & IV in comparison to lead treated animals of group II. Only the albumin level was significantly (P<0.001) enhanced after simultaneous exposure with lead in groups V & VI. Lower dose of plant was found ineffective to recover the protein level with lead simultaneous exposure in group V animals in comparison to both control animals and lead treated animals. The higher dose of plant was found significantly (P<0.001) effective to recover the protein level in simultaneously lead exposed animals of group VI in comparison to lead animals.

The bilirubin (Total and direct) levels were also significantly (p<0.001) reduced in ARRE treated groups III & IV in comparison to group II. The simultaneous administration of ARRE was also found significant (p<0.001) to decline the level of bilirubin (total & direct) in lead exposed animals in groups V & VI.

These observations of significant amendment in the levels of the liver enzymes may indicate that the extract of A. racemosus has hepatoprotective effects. This is also corroborated by significant decrease in the levels of total and direct bilirubin. Asparagus racemosus showed significant results with all types of assays and tried to make it up to control level to some extent.

Table 3: Effect of aqueous ARRE on hepatic enzymes (AST, ALT and ALP), albumin, and Total & Direct bilirubin in lead induced toxic damage in Swiss albino male mice.

<table>
<thead>
<tr>
<th>Groups</th>
<th>AST (U/L)</th>
<th>ALT (U/L)</th>
<th>ALP (U/L)</th>
<th>Direct Bilirubin (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>205.36 ± 1.04</td>
<td>175.28 ± 0.86</td>
<td>23.62 ± 0.59</td>
<td>0.253 ± 0.013</td>
</tr>
<tr>
<td>Lead Nitrate (LN)</td>
<td>295.02 ± 1.39 *d</td>
<td>262.63 ± 0.82 *d</td>
<td>61.03 ± 0.83 *d</td>
<td>0.266 ± 0.084</td>
</tr>
<tr>
<td>ARRE-1</td>
<td>181.62 ± 1.63 *d</td>
<td>163.08 ± 0.54 *d</td>
<td>20.6 ± 0.39 *d</td>
<td>0.263 ± 0.013 *d</td>
</tr>
<tr>
<td>ARRE-2</td>
<td>176.81 ± 0.75 *d</td>
<td>154.93 ± 0.79 *d</td>
<td>14.99 ± 0.39 *d</td>
<td>0.266 ± 0.084 *d</td>
</tr>
<tr>
<td>LN+ ARRE-1</td>
<td>285.41 ± 1.29 *d</td>
<td>236.06 ± 1.23 *d</td>
<td>46.79 ± 0.65 *d</td>
<td>0.266 ± 0.084 *d</td>
</tr>
<tr>
<td>LN+ ARRE-2</td>
<td>233.95 ± 1.04 *d</td>
<td>203.86 ± 0.71 *d</td>
<td>41.94 ± 0.64 *d</td>
<td>0.253 ± 0.013 *d</td>
</tr>
</tbody>
</table>

Table 4: Effect of aqueous ARRE on some markers of hepatic tissue and total protein content in lead induced toxic damage in Swiss albino male mice.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Total protein (mg/dl)</th>
<th>Albumin (mg/dl)</th>
<th>Total Bilirubin (mg/dl)</th>
<th>Direct Bilirubin (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>6.04 ± 0.79</td>
<td>2.45 ± 0.03</td>
<td>1.44 ± 0.02</td>
<td>0.225 ± 0.013</td>
</tr>
<tr>
<td>Lead Nitrate (LN)</td>
<td>3.90 ± 0.47 *d</td>
<td>1.06 ± 0.02 *d</td>
<td>5.85 ± 0.03 *d</td>
<td>0.430 ± 0.010 *d</td>
</tr>
<tr>
<td>ARRE-1</td>
<td>7.39 ± 0.41 *d</td>
<td>2.64 ± 0.04 *d</td>
<td>3.46 ± 0.03 *d</td>
<td>0.243 ± 0.012 *d</td>
</tr>
<tr>
<td>ARRE-2</td>
<td>8.61 ± 0.23 *d</td>
<td>2.87 ± 0.02 *d</td>
<td>2.54 ± 0.01 *d</td>
<td>0.263 ± 0.013 *d</td>
</tr>
<tr>
<td>LN+ ARRE-1</td>
<td>5.66 ± 0.46 *d</td>
<td>1.37 ± 0.01 *d</td>
<td>1.60 ± 0.08 *d</td>
<td>0.266 ± 0.088 *d</td>
</tr>
<tr>
<td>LN+ ARRE-2</td>
<td>6.65 ± 0.37 *d</td>
<td>1.78 ± 0.02 *d</td>
<td>1.57 ± 0.01 *d</td>
<td>0.253 ± 0.013 *d</td>
</tr>
</tbody>
</table>

Effect of Lead on Histopathological studies

Selected organ tissue sections of liver were prepared from both subjects of control and treated groups. All sections examined under the light microscope are represented by the fig (1-a-f).

The H & E stained sections of treated subject include the presence of more scattered cell and vacuolation in the liver cell texture. Lead also affects the hepatocytes by rupturing the cells. The hepatocytes showed dense lymphatic infiltration near the central vein and dark stained hepatocytic nuclei indicating cell pycnosis (fig-1b). Lead poisoning also showed some other abnormalities as compared to control subjects. The individual administration of ARRE displays mild necrosis and blood pooling near or in the central vein respectively (fig- c, d). Hepatocytes also showed the necrosis and congested blood vessels. The hepatic architecture showed a better potential to retain the normal lobular, artery and bile duct pattern with low blood pooling, recover necrosis, inflammation and hepatocyte vacuolation in simultaneous treatment ARRE doses with lead in group V & VI (fig- e-f).

Discussion

Lead is classically a chronic or cumulative toxin. It is an environmentally persistent toxin that causes neurological, hematological, gastrointestinal, reproductive, circulatory, and immunological pathologies[13-36]. The hepatic and renal damages have been reported in some cases[13, 35]. In the present study, mice consumed the given amount of lead nitrate showed a significant lower body weight and liver weight. Reduced adipose tissue may be the foremost cause of lower body weight. It may be due to the interruption in absorption and metabolism of food nutrients essential for health[37, 38]. The finding of this study with Asparagus racemosus on growth performance of body and organ weight revealed a considerable improvement in live body and organs (liver) weight. This study was similar to the observations of Sud39 (1982); Jadhav40 (1999) and Rekhate41 (2010) who recorded body weight gain in experimental model after Asparagus racemosus administration.

In the current investigation lead was found to be responsible for high MDA formation after the 45 days of lead exposure. MDA elevated values may be due to free radical generated by irradiation also react with unsaturated lipid generating hydroproxides, which in turn can induce changes in the lipid bilayer thereby altering the membrane permeability and induced lipid peroxidation. A. racemosus, under our protocol, is an effective antioxidant, as it reduced the level of tissue MDA by inhibiting lipid peroxidation caused by free radicals. This observation is in conformation with Visavadiya and Narasimhacharya42, 2005; Jain and Agrawal 43, 2008. The function of ARRE antioxidant substance systems is not to remove oxidants entirely, but instead to keep the LPO level at an optimum level to some extent. The antimetaltotoxic like activity of aqueous extract of ARRE might be due to saponins like shatavarin I-V.
Reactive oxygen species (ROS) are well known suggested as the causative factors in the process of abnormalities and toxicity44-46. SOD and catalase are important enzymes, which protect against the free radical injury mediated by O_2^- and H_2O_2. Low levels of the antioxidant enzymes SOD and CAT in lead treated animals might be due to the overwhelming effects of free radicals, as evidenced by the elevated levels of lipid peroxidation.

According to our results the SOD, CAT, GSH and GST levels were found low as compared to control in lead treated mice. The low levels of the enzymatic antioxidants SOD and CAT in lead nitrate-induced toxic lesions of mice further confirm the state of oxidative stress44-46. The present work shows that the Asparagus racemosus treated groups showed higher levels of catalase and superoxide dismutase. These findings are in accordance with Visavadiya42, 2005. The quantitative analysis of Asparagus racemosus root powder indicated the presence of flavonoids, polyphenols and ascorbic acid47, 48. It is well known that flavonoids and polyphenols are natural antioxidants but have also been reported to significantly increase SOD and catalase activities47-54. Further, it was shown that these compounds act as promoters for SOD and catalase55. Impaired SOD and CAT activity together with decreased levels of GSH might make the tissue vulnerable to O_2^- toxicity and lipid peroxidation. Also, because GSH is a substrate for GST, it might hamper the detoxifying capabilities and make the system more prone to H_2O_2 toxicity. Oxidative damage produced by lead in mice has also been reported56, 57.

In the present study, administration ARRE was found to significantly restore GSH and antioxidant enzymes suggestive of free radical scavenging activity of ARRE, which in turn may be associated with preventive activity as observed in this study. The currently noted elevated levels of SOD, catalase, GSH and GST with Asparagus racemosus root powder could be due to the influence of flavonoids and polyphenols.
Liver cell damage is characterized by a rise in plasma enzymes such as AST, ALT, ALP and ACP levels. Heavy metals are responsible to increase the level of both enzymes (ALT & AST). Along with ALT & AST enzymes, ALP and ACP are also used as marker enzymes for liver function and integrity. The alteration in enzymes level may be due to the damage and dysfunction of the related tissue. ALT activity is only found in increased levels of heavy metal toxicity, toxic hepatitis and muscular dystrophy. Lead exposure is able to disturb the lipid-bilayer order of the membrane structure of related organs. In the present study extract of Asparagus racemosus showed a protective effect on hepatic tissue against lead poisoning. AST and ALT content in the hepatic tissue, was decreased significantly after exposure to ARRE at two different aqueous doses. The present results showed that plant both doses have regulating effects on AST and ALT in lead loaded mice. These results are in agreement with the recent study of Jahan (2009), in which AR is used to protect liver from lead toxicity. These results are also in agreement with the recent study of Jahan (2009), in which AR is used to protect liver from lead toxicity.

The findings of present investigation conclude that ARRE treatment may be beneficial in plumbic detoxification. Liver, renal, respiratory and cardiovascular disorders that result from the increased action of free radicals and other harmful substances in the body. This antioxidant effect of ARRE may be beneficial in reducing the toxic effects of lead in the exposed populations.

Acknowledgement

The authors are thankful to the authorities of Banasthali University and Head of Biosciences and Biotechnology Department, Banasthali for providing support to the study.

References

11. Day AC. Indian Medicinal Plants Used in Ayurvedic Preparations. 1980; 136-137.

Sharma V, Sharma A, Kansal L. The effect of oral administration of *Allium sativum* extracts on lead nitrate induced toxicity in male mice. Food and Chemical Toxicology, 2010b; 45:928-936.

