Electrochemical behaviour of fluoroquinolone Antibiotic drug, moxifloxacin hydrochloride has been studied in aqueous medium using DC polarography and cyclic voltammetry. Moxifloxacin exhibits single well-defined cathodic peak in all the buffers like acetate buffer, phosphate buffer and B.R. buffer. The characteristics of the peak have been examined at different concentrations, pH and scan rates. This behaviour may be attributed to the reduction of the C=O double bond of reactant species in the acidic and basic medium. The experimental result shows that the reduction is irreversible and diffusion controlled. A mechanism has been proposed for the reduction of the sample.

Keywords: Fluoroquinolone antibacterial drug, Moxifloxacin, DC Polarography, Cyclic Voltammetry

MATERIALS AND METHODS

Reagents

A stock solution of 1x10⁻³ M moxifloxacin hydrochloride (moxif 400 mg) (Apollo pharmacy, India) has been prepared in triply distilled water and further diluted with the same solvent to give appropriate concentration for the working range.

Britton-Robinson buffer (0.1 M) solutions (pH, 2.0-12.30), used as supporting electrolyte, were prepared by dissolving a mixture of 6.18 gm of boric acid, 5.7 ml of glacial acetic acid, and 6.7 ml of Ortho-phosphoric acid in 1000 ml of volumetric flask. pH was adjusted with appropriate amount of 0.1 M Sodium hydroxide.

Acetate buffer (pH 3-6, 0.1M) was prepared with acetic acid and sodium acetate. Phosphate buffer (pH 6-11, 0.1 M) was prepared using di-sodium hydrogen phosphate and mono-sodium hydrogen phosphate. All reagents were of analytical-reagent grade (Merck and sigma) and triply distilled water was used throughout.

Instrumentation

DC Polarographic experiments were carried out with Elico D.C. recording polarograph model CL 357. The current voltage measurements were performed with three electrode assembly, a dropping mercury electrode as working electrode (m = 2.768 mg/s, t = 3.0 sec, h = 60 cm.), calomel as reference electrode and platinum electrode as counter electrode. The current responses and applied potentials were recorded at scan rate 100 mV/min.

REFERENCES

Some available methods for the estimation of moxifloxacin in biological fluids and pharmaceutical formulation are spectrofluorimetric,12 electrophoretic13 and chromatographic (HPLC and LC)14-16. Although chromatographic17 and spectrophotometric18 methods offer high degree of specificity, yet, sample clean up and instrument limitations preclude their use in routine clinical studies. In recent years, the modern voltammetric methods offer another possibility for the determination of compounds of pharmaceutical interest because these methods are faster, easier, cheaper and more sensitive than spectrometric and HPLC methods and the experimental methodology are less tedious. Some voltammetric methods for the reduction behaviour of moxifloxacin hydrochloride at HMDE19-20 and oxidation behaviour at glassy carbon electrode have been used earlier21. The complex formation of moxifloxacin with some transition metal ions have also been studied electroanalytically22-23.

In continuation of previous work the aim of the present paper is to reconsider the electrochemical behaviour of the drug at DME and glassy carbon electrode in Britton-Robinson (BR) buffer, acetate buffer and phosphate buffer.
All the voltammetric measurements were performed with a CH Instruments, USA made model CHI 1230. All experiments were carried out in three-electrode system. Glassy carbon electrode (Part No.CHI 104 of a diameter 3 mm) was used as the working electrode, a platinum wire as counter electrode and Ag/AgCl electrode as reference electrode. pH was adjusted to suitable range by Elico digital pH meter.

Procedure
Electrochemical measurements in dc polarography as well as in voltammetry were performed in the solution of total 10 ml containing Moxifloxacin, Triton X-100 (maximum suppressor), supporting electrolyte or buffer of desired pH value. The solutions (10 ml) was placed in the working cell and were purged with nitrogen for at least 15 minutes prior to each experiment and the nitrogen atmosphere was maintained thereafter, then a negatively directed dc scan was initiated between 0.0 and -2.0 V. The polarograms were recorded in the following order: pure supporting electrolyte and after addition of each aliquot of moxifloxacin hydrochloride.

In cyclic voltammetry before each measurement, the Glassy carbon electrode was polished, at the start of the work, with aqueous slurry of 0.5 μm alumina on a damp silk cloth until a mirror-like finish was obtained, then it was rinsed with distilled water and dried with a non-abrasive tissue paper. All voltammetric measurements were carried out at room temperature after purging with pure nitrogen for 10 minutes.

RESULTS AND DISCUSSION
DC polarographic study
Electrochemical behaviour of Moxifloxacin hydrochloride has been studied in different supporting electrolytes like B.R.buffer, Acetate buffer and Phosphate buffer in aqueous medium. In all the mediums modified Gaur-Bhargava’s method25 was used. DC polarographic study of Moxifloxacin hydrochloride has been carried out at room temperature after purging with pure nitrogen.

Effect of concentration
Polarograms were run of solutions containing Moxifloxacin hydrochloride in concentrations ranging from 1×10⁻⁴ M to 2×10⁻³ M in Acetate buffer (pH=6, 0.1 M)[fig 1]. The results indicate that the reaction is irreversible. The half-wave potential shifts towards less negative value with the increasing concentration. Further, the height of the wave was found to vary directly with the concentration indicating the electrode reaction to be diffusion controlled. The values of K²n indicate that the electrode reaction is more irreversible at low concentrations²⁶. The results are shown in table 1.

<table>
<thead>
<tr>
<th>Concentration (M)</th>
<th>E½ (Volt)</th>
<th>iα (µA)</th>
<th>Slope (Volts)</th>
<th>αn</th>
<th>D=10⁻⁸ (cm²/sec)</th>
<th>K²n (cm s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0010</td>
<td>1.413</td>
<td>0.086</td>
<td>1.084</td>
<td>7.77</td>
<td>4.049×10⁻²⁶</td>
<td>Meites-Israels method</td>
</tr>
<tr>
<td>0.0015</td>
<td>1.381</td>
<td>1.1</td>
<td>0.070</td>
<td>6.53</td>
<td>1.715×10⁻²¹</td>
<td>Gaur-Bhargava's method</td>
</tr>
<tr>
<td>0.0020</td>
<td>1.353</td>
<td>1.4</td>
<td>0.077</td>
<td>3.67</td>
<td>1.068×10⁻²²</td>
<td></td>
</tr>
</tbody>
</table>

Effect of pH
The pH of the electrolyte medium is one of the variables that commonly and strongly influence the shape of the polarogram, and therefore it was important to investigate the effect of pH on the electrochemical system. The effect of pH on the reduction of moxifloxacin has been studied in phosphate buffer (pH=6-10) (fig 3) and B.R. buffer (pH=2-12.30) (fig 4).

In both buffers moxifloxacin gave one well defined cathodic peak. B.R. buffer has been selected for further studies due to its wide acidic or basic pH range and the composition of the buffer did not affect the
id values. With rise in pH, the half wave potential shifted to more negative value in phosphate buffer as well as in B.R.buffer indicating the involvement of protons in electrode reaction. A plot of $E_{1/2}$ versus pH (fig 5a) gave two straight lines, with an intersection point at pH=6.8 which corresponds to the first pK$_a$ value of moxifloxacin. This was also proved by spectrophotometry and the pK$_1$ was found to be 6.25±0.02.

The relation between $E_{1/2}$ and pH of the solution is expressed by the following equation:

$$E_{1/2} = -0.056 \cdot \text{pH} - 1.075 \quad (R=0.999)$$

Over the pH range 2 – 6.5

$$E_{1/2} = -0.099 \cdot \text{pH} - 0.783 \quad (R=0.990)$$

Over the pH range 7 – 10.4

The logarithmic analysis of the reduction waves at different pH values resulted in straight lines with the slope values 0.045 to 0.078 V indicating the irreversible nature of the electrode process (Fig 6). From the values of the slope the value of α_n (product of transfer coefficient α and number of electrons n transferred in the rate-determining step) were calculated and was found to be 0.78 to 1.33. Assuming that the electroreduction of C=O double bond involves two electrons in the rate determining step the transfer coefficient should be 0.39 to 0.66 which is very close to the totally irreversible ($\alpha=0.5$) electrode process. The results are listed in table 2 and 3.
The number of protons, Z_{H^+}, consumed in the electrode process for each pH value was determined by the following equation:

$$\frac{\Delta E_{1/2}}{\Delta \text{pH}} = \frac{0.05915}{\alpha n} (Z_{H^+})$$

where the values of αn (transfer coefficient) were calculated by mettes-israel method. The value of Z_{H^+} was found to be 1.14 and 1.05 at pH 7 in phosphate buffer and B.R. buffer respectively, i.e. two protons probably are consumed in the electrode process.

Further, the effect of pH on diffusion current indicates that different ionic species present in the solution having different diffusion coefficients (fig 5b). Absolute value of i_d where the reduction peak shape is well defined passes through a maximum at 9.01. Also the irreversibility of the system is more in basic medium. From the pK_a values it is clear that this compound is weaker acid. The intramolecular hydrogen bond formation between carboxyl and keto group in the quinolone ring contributes to lower the acidic character and also decreased the free availability of carbonyl group for the reduction in acidic medium. Thus the drug is best reduced in basic medium.

Table 2: pH effect on the polarogram of moxifloxacin (2×10^{-3} M) in 0.1 M phosphate buffer

<table>
<thead>
<tr>
<th>pH</th>
<th>$E_{1/2}$ (Volt)</th>
<th>i_d (µA)</th>
<th>Slope</th>
<th>αn</th>
<th>A</th>
<th>Z_{H^+}</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.33</td>
<td>-1.386</td>
<td>1.3</td>
<td>0.070</td>
<td>0.869</td>
<td>0.44</td>
<td>0.97</td>
</tr>
<tr>
<td>7.0</td>
<td>-1.432</td>
<td>1.2</td>
<td>0.063</td>
<td>0.975</td>
<td>0.49</td>
<td>1.14</td>
</tr>
<tr>
<td>8.0</td>
<td>-1.501</td>
<td>1.3</td>
<td>0.068</td>
<td>0.899</td>
<td>0.45</td>
<td>0.55</td>
</tr>
<tr>
<td>9.0</td>
<td>-1.538</td>
<td>1.0</td>
<td>0.063</td>
<td>0.970</td>
<td>0.49</td>
<td>0.62</td>
</tr>
<tr>
<td>10.0</td>
<td>-1.575</td>
<td>0.7</td>
<td>0.063</td>
<td>0.973</td>
<td>0.49</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Effect of pH on the polarogram of moxifloxacin (2×10^{-3} M) in 0.1 M B.R.buffer

<table>
<thead>
<tr>
<th>pH</th>
<th>$E_{1/2}$ (Volt)</th>
<th>i_d (µA)</th>
<th>Slope</th>
<th>αn</th>
<th>A</th>
<th>Z_{H^+}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.12</td>
<td>1.194</td>
<td>2.2</td>
<td>0.064</td>
<td>0.958</td>
<td>0.48</td>
<td>0.97</td>
</tr>
<tr>
<td>3.02</td>
<td>1.248</td>
<td>1.5</td>
<td>0.059</td>
<td>1.043</td>
<td>0.52</td>
<td>1.09</td>
</tr>
<tr>
<td>4.08</td>
<td>1.308</td>
<td>1.0</td>
<td>0.046</td>
<td>1.33</td>
<td>0.66</td>
<td>1.12</td>
</tr>
<tr>
<td>5.08</td>
<td>1.359</td>
<td>1.9</td>
<td>0.078</td>
<td>0.786</td>
<td>0.39</td>
<td>0.84</td>
</tr>
<tr>
<td>6</td>
<td>1.417</td>
<td>1.4</td>
<td>0.057</td>
<td>1.082</td>
<td>0.54</td>
<td>1.36</td>
</tr>
<tr>
<td>7.01</td>
<td>1.492</td>
<td>2.2</td>
<td>0.070</td>
<td>0.868</td>
<td>0.43</td>
<td>1.05</td>
</tr>
<tr>
<td>8.03</td>
<td>1.565</td>
<td>2.4</td>
<td>0.063</td>
<td>0.974</td>
<td>0.49</td>
<td>1.85</td>
</tr>
<tr>
<td>9.01</td>
<td>1.678</td>
<td>2.8</td>
<td>0.067</td>
<td>0.915</td>
<td>0.46</td>
<td>1.66</td>
</tr>
<tr>
<td>10.03</td>
<td>1.787</td>
<td>2.3</td>
<td>0.067</td>
<td>0.915</td>
<td>0.46</td>
<td></td>
</tr>
</tbody>
</table>
Cyclic voltammetric behaviour

The reversibility of reduction process of moxifloxacin was further investigated by cyclic voltammetry at glassy carbon electrode. Cyclic voltammograms for moxifloxacin were recorded within the potential range -1.0 to -1.5 V at different pH and scan rate. Moxifloxacin (2×10^-4 M) exhibited a single 2-electron irreversible cathodic peak in B.R.buffer of pH values 2.12 to 10.50. The peak potential of the reduction wave shifted to more negative value with rise in pH indicating the existence of the protonation reaction coupled with the moxifloxacin reduction process. No peaks were observed in the anodic direction suggesting the irreversible nature of the electrode process.

Effect of scan rate

The influence of the scan rate on the peak current and peak potential of 2×10^-4 M moxifloxacin has been investigated in the range of 10-50 mV s^-1 in B.R.buffer at pH value 9 (fig 6). Any change in ip and E_p of reduction wave of moxifloxacin due to the changing ν values were observed. The shift of peak potential (E_p) to a more negative value with increasing the scan rate indicates the irreversible nature of the electrode process moxifloxacin at glassy carbon electrode.

Fig. 6: Cyclic voltammograms of 2x10^-4 M moxifloxacin in B.R. buffer at pH 9 on glassy carbon electrode at different scan rates: (a) 10, (b) 20, (c) 30, (d) 40 and (e) 50 mVs^-1

Linear -E_p versus log ν plot (fig 7A) of slope value of 0.026 V was obtained according to the following equation:

\[E_p = -0.026 \log \nu - 1.302, R^2=0.969 \]

From the slope of the straight line the value of αn was calculated using equation: \(\Delta E/\Delta \log \nu = 30/\alpha_n \) and it was found to be 1.15.

Generally, α is assumed to be 0.5 in a totally irreversible electrode process. Thus, two electrons are involved in the electro reduction of moxifloxacin.

The peak current increased steadily with increasing scan rate and the peak current function, \(i_p/(AC\nu^{1/2}) \), exhibited nearly constancy.

The linear relationship existing between peak current and the square root of the scan rate (fig 7B) showed that the reduction process is predominantly diffusion-controlled in the whole scan rate range studied. The equation is as follows:

\[i_p = 1.903 \nu^{1/2} + 5.236, R = 0.985 \]

This finding was confirmed by the linear plots of log i_p versus log ν (fig 7C) with the slope 0.325 mVs^-1, which are close to the theoretical value, 0.5, expected value for a process controlled by diffusion. The equation obtained was:

\[\log i_p = 0.325 \log \nu + 0.717, R=0.993. \]

Fig. 7: Plot of -E_p vs. log ν (A), i_p vs. \(\nu^{1/2} \) (B) and log i_p vs. log ν (C) from the voltammogram in fig 5.
Determination of electron transfer coefficient

The values of αn (where α is the transfer coefficient and n is the number of electrons involved in the rate determining step) were calculated for the reduction of moxifloxacin at pH value of 9.0 at glassy carbon electrode, according to the following equation37:

\[\alpha_n = 0.048 \left(\frac{E_p - E_{p/2}}{E_p - E_{p/2}} \right) \]

Where, \(E_{p/2} \) is the potential at which the current equals one-half of the peak current (i_p/2). The values of α obtained are 0.31 and 0.32 at different scan rate showing the total irreversibility of the electron transfer reaction. The results are listed in Table 4.

Table 4: Values of the transfer coefficient, α and diffusion coefficient, D, obtained from cyclic voltammogram of moxifloxacin at different scan rate

<table>
<thead>
<tr>
<th>Scan Rate (mV s⁻¹)</th>
<th>-E_p (Volt)</th>
<th>-E_p/2 (Volt)</th>
<th>E_p - E_p/2 (Volt)</th>
<th>α</th>
<th>i_p (µA)</th>
<th>Dx10⁻⁶ (cm² s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.330</td>
<td>-1.2542</td>
<td>0.0777</td>
<td>0.31</td>
<td>10.87</td>
<td>1.16</td>
</tr>
<tr>
<td>20</td>
<td>1.340</td>
<td>-1.2640</td>
<td>0.077</td>
<td>0.31</td>
<td>14.14</td>
<td>0.97</td>
</tr>
<tr>
<td>30</td>
<td>1.345</td>
<td>-1.2680</td>
<td>0.076</td>
<td>0.32</td>
<td>15.93</td>
<td>0.82</td>
</tr>
<tr>
<td>40</td>
<td>1.349</td>
<td>-1.2713</td>
<td>0.0758</td>
<td>0.31</td>
<td>17.26</td>
<td>0.72</td>
</tr>
<tr>
<td>50</td>
<td>1.349</td>
<td>-1.2713</td>
<td>0.0758</td>
<td>0.32</td>
<td>18.39</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Reaction Mechanism

It has been reported that C₅H₄NO or –COOH is the active group of quinolone. But the C₅H₄NO is the more active one, reported by the calculation of wiiberg bond orders of similar compound49 and based on the observation of polarographic and voltammetric technique two electrons and two protons are involved in the electrode reaction. Thus the possible mechanism of the electrode reaction may be as follows:

![Scheme 2: possible reduction mechanism of moxifloxacin](image)

CONCLUSION

The reduction behaviour of moxifloxacin has been studied in B.R.buffer (pH=2.12-10.50) by two simple and sensitive electrochemical methods. In both the methods the drug gave one well defined cathodic peak which is diffusion controlled and irreversible in nature. The reduction process was found to be pH dependent, as one would expect for an organic reaction, the shift per pH unit exceeds the theoretical values predicted for reversible reactions and in reaction mechanism two hydrogen ions and two electrons are involved. The reduction process was found to be more irreversible at lower concentration. If proper attention is given to the factors of pH, concentration and scan rate, the wave could be of value for qualitative identification.

ACKNOWLEDGEMENT

The authors are thankful to the Head, Department of Chemistry, University of Rajasthan, Jaipur for providing laboratory facilities to carry out this research. One of the authors (Sharda) is thankful to CSIR for the award of SRF (NET).

REFERENCES

