ABSTRACT

Steroidogenesis plays a key role in the development and maintenance of male reproductive function and fertility. The objective of the present study was to investigate the effect of Carica papaya seed extract on steroidogenesis. The cholesterol levels in testes were significantly decreased by the Carica papaya seed extraction indicating decreased mobilization towards androgenesis which leads to decreased steroidogenesis and thereby inhibition of spermatogenesis in testes. It is noticed that the liver cholesterol was significantly enhanced with reduced blood cholesterol. The lowering of the 3β-HSD and 17β-HSD activity levels in the testes suggest the antifertility agents interfere with steroid hormone biosynthesis, which ultimately result in impaired spermatogenesis and infertility.

Keywords: 3β-HSD, 17β-HSD, Carica papaya, Cholesterol, Spermatogenesis.

INTRODUCTION

Medicinal plants have successfully been used to induce sterility in laboratory animals [1-3]. Pawpaw seed (Carica papaya) [4,5] reported high success in using. Pawpaw (Carica papaya) seeds had been used as fertility control agents in some animal models and even on human beings [6,7] respectively. Chloroform extract of papaya seeds tested in langen monkeys for one year, caused a steady decrease in sperm production with no sign of toxicity [8,9]. Crude extract fed to male rats deteriorated quantity and quality of the sperm [10,11]. At higher dose, it provided 100% contraception, but extract fed to male rats deteriorated quantity and quality of the spermatozoa from undifferentiated stem cells [19]. Pawpaw (Carica papaya) seeds contain antifertility properties, particularly of the seeds [20]. A complete loss of fertility has been reported in male rabbits, rats and monkeys fed an extract of papaya seeds [20,8,21]. Thus the steroidogenesis is important for spermatogenesis. Hence in the present study it is important to know how the steroid enzymes are modulating during spermatogenesis and antispermatogenesis.

MATERIALS AND METHODS

Healthy adult male Wistar strain albino rats (90days old, weight 160±10g) were administered with 100mg/kg body wt/day of alcoholic extract of papaya seed orally for 15days. The alcoholic extract was prepared according to WHO 1983 [22] protocol C2-04. Seeds were shed-dried, powdered and extracted with 95%ethanol (v/v) at 55-60°C for 3h. The solvent was distilled off under reduced pressure; the resulting mass was dried under vacuum and kept at 24°C until use. The control animals were given normal saline or sterile distilled water. Both control and experimental rats were maintained in standard air conditioned animal house at a temperature of 25±2°C, exposed to 12-14h day light and fed on standard rat feed obtained from Hindustan Lever Ltd., Bombay, India. The usage of animals was approved by the Institutional Animal Ethics committee (Regd.No. 438/01/j/CPCSEA/dt.17/02/2001) in its resolution number 9/IAEC/SVU/Zool/dt.4-3-2002.

Twenty four hours after the last dose, the animals were autopsied. The tissues like testes, epididymis, seminal vesicle, prostate gland and liver were isolated, chilled immediately and blood was collected, used for biochemical analysis. The cholesterol estimated by Natelson 1971 [23]. The enzymes like 3β-HSD & 17β-hydroxy steroid dehydrogenase by Bergmeyer 1974 [24] were estimated in control and experimental rat tissues.

RESULTS AND DISCUSSION

The data represented in tables 1-3 shows the effect of Carica papaya seed extract on cholesterol in reproductive and non reproductive tissues and 3β-HSD & 17β-HSD in testes of albino rats. The cholesterol levels were significantly decreased in testes as it is necessary for steroidogenesis (table-1). This result indicates the decreased steroidogenesis which leads to decreased spermatogenesis. Cholesterol is the precursor of the steroid hormones [25], providing the backbone of the steroid molecule. The biosynthesis of testosterone directly from cholesterol can only occur in the Leydig cells [26].

Inter-group comparison

a- P < 0.001 statistically significant when compared control with experimental,
b- P < 0.01 statistically significant when compared control with experimental,
e- Non significant changes.

The impact of treatment on cholesterol is more in liver (+59.39), the central organ in cholesterol metabolism than in blood (table-2). In sex accessories there were no significant changes in epididymis while in seminal vesicle and prostate cholesterol levels were slightly (P<0.01) increased.

Cholesterol is one of the most important steroids and is a structural component of membranes as well as the precursor for bile acids and steroid hormones. Cholesterol is a sterol with special functions in various tissues and organs. First of all, it is a structural component of all cell membranes. Furthermore, it is the precursor molecule of steroid hormones, such as progesterone, testosterone and cortisol. The unsaponifiable fraction of the neutral lipid fraction of the rat testis represents primarily cholesterol and steroids [27]. Cholesterol is an important precursor for the steroid hormones. The testis and its metabolism are dependent on the plasma and endogenously synthesized cholesterol. Hence the cholesterol levels were estimated and found to be significantly decreased in the experimental rat testis. This observation indicates either its decreased uptake from the plasma or increased synthesis or decreased mobilization towards androgenesis or decreased catabolism. This was supported by enhanced blood cholesterol levels (Table-2) by the treatment in the present study.
The spermatogenesis is a complex process which is strictly regulated by the hypothalamo–pituitary–testicular axis, which involves the pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Apart from LH, FSH and androgens, various growth factors, hormones and estrogens are involved in regulating the testicular functions [28]. Thus the reduced levels of cholesterol in testes by the treatment in the present study indicate the antispermatogenic effect of Carica papaya seed extraction through decreased steriodogenesis [29].

The activity levels of 3β-HSD and 17β-HSD the key enzymes of androgenesis were decreased significantly in the treated rat testes (Table 1-3, Fig 1-2). The decreased cholesterol content reveals that there is no dearth of substrate for steriodogenesis. Since the 3β-HSD and 17β-HSD activity levels were decreased, Carica papaya seed extraction inhibits testicular steriodogenesis. Suggesting the impaired steriodogenesis [29,30]. There is decreased activity levels of 3β-HSD and 17β-HSD in the testes suggest the antifertility agents interfere with steroid hormone biosynthesis, which ultimately result in impaired spermatogenesis and infertility. The kinetic characteristics of 17β-HSD were determined in the cell system which would reflect the native kinetic properties of the enzyme under the influence of native intracellular milieu [30].

Two different pathways of androgenesis have been reported in testis, (1) progreseterone pathway or Δ⁷-pathway and (2) dehydroepiandrosterone pathway or Δ⁵-Pathway. 3β-HSD acts on C-19 and C-21 steroids by specifically acting on 3β-hydroxysteroid dehydrogenases (17 β -HSDs) catalyze the final steps in androgen biosynthesis, which ultimately result in impaired spermatogenesis and infertility. The kinetic characteristics of 17β-HSD were determined in the cell system which would reflect the native kinetic properties of the enzyme under the influence of native intracellular milieu [30].

Table 1: The Levels of Cholesterol in reproductive tissues of control and papaya seed extraction treated rats.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Name of the tissue</th>
<th>Control</th>
<th>Experimental</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Testis (mg/g wet wt.)</td>
<td>0.685±0.054</td>
<td>0.548±0.039</td>
<td>-20.01%</td>
</tr>
<tr>
<td>2.</td>
<td>Epididymis (mg/g wet wt.)</td>
<td>1.345±0.101</td>
<td>1.307±0.099</td>
<td>-3.47%</td>
</tr>
<tr>
<td>3.</td>
<td>Seminal Vesicle (mg/g wet wt.)</td>
<td>0.265±0.014</td>
<td>0.291±0.017</td>
<td>+9.81%</td>
</tr>
<tr>
<td>4.</td>
<td>Prostate gland (mg/g wet wt.)</td>
<td>0.279±0.015</td>
<td>0.319±0.019</td>
<td>+14.34%</td>
</tr>
</tbody>
</table>

Values are mean ± S.E.M (n = 6)

Table 2: The Levels of Cholesterol in Liver and Blood of control and papaya seed extraction treated rats.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Name of the tissue</th>
<th>Control</th>
<th>Experimental</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Liver (mg/g wet wt.)</td>
<td>5.32±0.421</td>
<td>8.40±0.736</td>
<td>+59.39%</td>
</tr>
<tr>
<td>2.</td>
<td>Blood (mg/100ml)</td>
<td>194.85±10.42</td>
<td>160.29±12.04</td>
<td>-17.74%</td>
</tr>
</tbody>
</table>

Values are mean ± S.E.M (n = 6)

Table 3: The levels of 3β-HSD&17β-HSD in control and Papaya seed extraction treated rat testes.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Parameter</th>
<th>Control</th>
<th>Experimental</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>3β-HSD (µmol NAD+ reduced/mg protein/min)</td>
<td>0.475±0.011</td>
<td>0.330±0.012</td>
<td>-30.53%</td>
</tr>
<tr>
<td>2.</td>
<td>17β-HSD (µmol NADPH oxidized /mg protein/min)</td>
<td>0.592±0.023</td>
<td>0.492±0.031</td>
<td>-16.89%</td>
</tr>
</tbody>
</table>

Values are mean ± S.E.M (n = 6)

CONCLUSION

It is concluded that the Carica papaya seed extraction decreases the testicular cholesterol levels and steriodogenic enzyme levels which leads to impaired spermatogenesis and infertility.

ACKNOWLEDGEMENTS

The authors were grateful to UGC, New Delhi for financial assistance.

REFERENCES

