IMMUNOSTIMULATORY ACTIVITY OF PHOENIX DACTYLIFERA

KEHILI HOUSSEM EDDINE¹, SAKINA ZERIZER*¹, ZAHIA KABOUCHE²
¹University of Constantine 1, Algeria, Department of Animal Biology Option Immuno-Onctology, ²University of Constantine 1, Algeria, Department of Animal Biology.

ABSTRACT

Objective: The aim of our study was to evaluate in vivo the immunostimulatory properties of Phoenix dactylifera "AZARZA variety".

Methods: The immunostimulant potential of the plant extract of Phoenix dactylifera on the phagocytic activity was measured by the carbon clearance rate test. The anti-oxidant activity was measured by spectrophotometric determination of glutathione from liver’s homogenate.

Results: Our results obtained in this study showed that the phagocytic and the anti-oxidant activities was increased significantly in animals injected with Phoenix dactylifera "AZARZA" extract at doses (30, 50 and 100mg/kg) P<0.05. The clearance rate of carbon was significantly faster at the concentration of 50 mg/kg when is compared to the two concentrations 30 and 100mg/kg (P= 0.004) and the release of the GSH from the liver was significantly higher at the concentration of 50 mg/kg when is compared to the two concentrations 30 and 100mg/kg (P= 0.003).

Conclusion: The Phoenix dactylifera extract revealed an immune-stimulatory effect on the reticuloendothelial system and anti-oxidant activity with higher effect by the administration of 50 mg/kg.

Keywords: Phoenix dactylifera, Immunostimulatory activity, Carbon clearance rate, Glutathione.

INTRODUCTION

The term immunostimulation comprises a prophylactic or therapeutic concept which aims at the stimulation of our non-specific immune system. This implies primarily the non-antigen dependent stimulation of the function and efficiency of granulocytes, macrophages, complement and natural killer cells. In contrast to immunity achieved by immunization or antibody injection, this type of immunity, arising from unspcific immunostimulation, is termed paramunty and the agents responsible are known as paramunty inducers. It is characteristic for these agents that they do not affect immunological memory cells [1]. Immunostimulation is also indicated to counteract immunosuppression and ineffectively working immune system, manifesting itself for example by a reduced resistance against infectious diseases, which may be the consequences of serious infections, physical and psychological stress, alcoholism, environmental damages such as pesticides, excessively applied chemotherapy, or long term treatment with immunosuppressive drugs [1].

Herbal drugs are known to possess Immunomodulatory properties and generally act by stimulating both specific as well as non-specific immunity. Immunomodulatory agents are used to either suppress or stimulate the immune responsiveness of an organism against the invading antigens [2].

Immunostimulatory therapy is now being recognised as an alternative to conventional chemotherapy for a variety of disease conditions, involving the impaired immuno-response of the host [3].

Glutathione (L-glutamyl-L-cysteinylglycine) is the principal non protein thiol involved in the antioxidant cellular defense. It is a tripeptide composed of cysteine, glutamic acid and glycine, and its active group is represented by the thiol (-SH) of cysteine residues. Glutathione is a ubiquitous molecule that is produced in all organs, especially in the liver [4].

Glutathione reduced (GSH) plays an important role in many biological processes such as intracellular reduction-oxidation metabolic cycles, transportation, protein synthesis, catabolism, and metabolism [5].

The Phoenix dactylifera is a monocotyledonous woody perennial belonging to the Areaceae family, which comprises 200 genera and 3000 species. The beneficial health and nutrition values of date palm, for human and animal consumption, have been claimed for centuries [6].

Algeria is the sixth important countries in date world production. During 2007, 468000 metric tons were produced in Algeria. The Algerian dates represented about 7.25% of the total world production as reported by FAO in 2009 [6].

Fruits of the date palm (Phoenix dactylifera Fruits) are commonly consumed in many parts of the world especially the Arabian countries. Date fruit are used as nutrient while the pollen grains used in the treatment of infertility [7]. Traditional medicines are gaining importance and nowadays are being studied to find the scientific basis of their therapeutic actions. The use of herbal medicine has become increasingly popular worldwide especially in the Asian and African countries. The various parts of Phoenix dactylifera widely are used in traditional medicine for the treatment of various disorders which include memory disturbances, fever, and inflammation [8].

MATERIALS AND METHODS

Plant material

Collection

The jam was prepared from the date palm (Phoenix dactylifera AZARZA variety) which was collected from Ghardaïa (Algerian septentrional Sahara).

Preparation of the extract

The jam concentrations of 30, 50 and 100 mg/kg were diluted into 10 ml of Nacl (0.9%).

Animals

Adult male Mus Musculus mice (2-2.5 month old) were procured from central pharmacy Algeria. The animal experiments weighing (20-33 g) were used for determination of the phagocytic activity. The animals were kept in polyacrylic cages and maintained under standard housing conditions (room temperature 24-7 with 12:12 light: dark cycles). Food was provided in the form of dry pellets (SARL Production Locale, Bouzáréah, Algeria) and water adlibitum. The animal studies were conducted after obtaining clearance from Institutional

KEHILI HOUSSEM EDDINE¹, SAKINA ZERIZER*¹, ZAHIA KABOUCHE²
¹University of Constantine 1, Algeria, Department of Animal Biology Option Immuno-Onctology, ²University of Constantine 1, Algeria, Department of Animal Biology.

Received: 28 Dec 2013, Revised and Accepted: 20 Apr 2014
Animal Ethics Committee and the experiments were conducted in strict compliance according to ethical principles and guidelines provided by Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA).

Phagocytic activity

Phagocytic activity of reticuloendothelial systems (RES) was assayed by carbon clearance test. Phagocytic index was calculated as a rate of carbon elimination of reticuloendothelial systems by carbon clearance test determined by a reported method (Zerizer et al., 1955). Animals were divided into four groups, GI, GII, GIII, and GIV. Group I (Control) was given by ip injection 0.9% NaCl (0.5 ml/mouse), groups II, III and IV were administered with different concentrations of the Phoenix dactylifera extract (30, 50 and 100 mg/kg) respectively.

After 48 h of ip injection, carbon ink suspension was injected via the tail vein to each mouse at a dose of 0.1 ml/10g, the mixture consisted of black carbon ink 3 ml, saline 4 ml and 3% gelatin solution 4 ml. Blood samples (=14 drops or 25µl) were then withdrawn from the retro-orbital plexus at 5 and 15 minutes after injection of colloidal carbon ink via an heparin glass capillaries and lysed in 0.1% sodium carbonate solution (4ml). The optical density was measured spectrophotometrically at 676nm.

The phagocytic activity is expressed by the phagocytic index K which measures all the reticuloendothelial system function in the contact with the circulating blood and by corrected phagocytic index α which expresses this activity by unit of active weight organs: liver and spleen. The clearance rate is expressed as the half-life period of the carbon in the blood (t1/2, min) [9]. These parameters are calculated using the following formulas:

\[
K = \frac{\log OD_1 - \log OD_2}{t_2 - t_1}
\]

\[
t_{1/2} = \frac{0.693}{K}
\]

\[
\alpha = 3 \times \frac{\text{Body weight of animal}}{\text{Liver wt + spleen wt}}
\]

OD1 and OD2 are the optical densities at time t1 and t2, respectively.

Glutathione assay (GSH)

The animals were sacrificed and the liver and spleen dissected and weighted immediately in the wet state.

Preparation of the homogenate

The weight of 0.5g of the liver was homogenized in 2ml of TBS (Tris 50 mM, NaCl 150 mM, pH 7.4). Then the homogenates were centrifuged at 9000 g for 15 min at 4°C after that the supernatant was used for determination of glutathione reduced (GSH).

Method

The glutathione reduced content in the liver was measured spectrophotometrically by using 5,5′-dithiobis-(2 nitrobenzoic acid) (DTNB) as a coloring reagent, following the method of Weckbecker et al., 1988 [10].

Statistical Analysis

Results were analyzed for differences between the groups across dietary treatments by one–way ANOVA test and Tukey’s multiple comparison tests (SPSS version 9). The values of P < 0.001, P < 0.01, P < 0.05 were considered to indicate the significant levels.

RESULTS

The present data showed that there is a significant difference in the means for the phagocytic index (K) between groups (NaCl, 30 mg, 50 mg and 100 mg) P = 0.003 and the group 50 mg has the highest significantly difference from groups (NaCl, 30 mg and 100 mg) at P=0.002. This indicates that Phoenix dactylifera enhanced the phagocytic activity by stimulating the reticuloendothelial system (Figure 1).
As shown in the figure 2, the half time of colloidal carbon was decreased significantly between groups P= 0.003 however at the concentration of 50mg/kg was faster when it is compared to the other groups P= 0.004.

The results of this study showed that there is a significant difference in the means for the corrected phagocytic index α between groups (NaCl, 30 mg, 50 mg and 100 mg) P=0.004 and the corrected phagocytic index α was increased significantly in groups (30 mg, 50 mg and 100 mg) when it is compared to the control group (NaCl) P=0.05 but at the concentration of 50mg /kg the corrected phagocytic index α was higher than the other groups P= 0.006 (Figure 3).

The last part of this study showed that there is a significant difference in the means for the Glutathione values between groups (NaCl, 30 mg, 50 mg and 100 mg) P= 0.002 and the Glutathione values was decreased highly and significantly in groups (30 mg, 50 mg, and 100 mg) when it is compared to the control group (NaCl) P<0.05 however the glutathione reduced was lower than the other groups P= 0.003 (figure 4). This indicates that the extract liberates the glutathione particles from liver and affirms that Phoenix dactylifera enhanced the anti-oxidant activity.

From ages dates are consumed by humans for its beneficial health and nutritional values [16].

In this study we observed that the animals administered with the extract of Phoenix dactylifera stimulates the phagocytic index at different concentration. So, this result agrees with those of Gokani et al. [17] and Aribi et al [18] who reported that the administration of extraction of Clerodendrum philomidis and Premna integrifolia roots and Argania spinosa respectively in the mouse are increased the phagocytic index at different concentrations.

Treatment by the extract of Phoenix dactylifera enhanced the rate of carbon clearance from the blood when it is compared to the control group. Cells of the reticuloendothelial systems play important role in the clearance of particles from the blood stream. When colloidal carbon particles in the form of ink are injected directly into the systemic circulation, the rate of clearance of carbon from the blood by macrophage is increased during the treatment of rats by the methanolic extract of Morus Alba Linn (Mulberry) leaves. [19]. Also the jam reduces the glutathione particles from liver and affirms that Phoenix dactylifera enhanced the glutathione reduced concentration and anti-oxidant activity. This result agrees with those of Hasnaoui et al [20].

CONCLUSION

In vivo investigations showed that the jam of Phoenix dactylifera at concentration of 50mg/kg increased the phagocytic index, corrected phagocytic index α and decreased the half time of carbon and the concentration of the glutathione reduced. This Immunomodulatory effect of Phoenix dactylifera could be attributed to its interesting chemical composition. It is essentially characterized by the presence of unsaturated fatty acids, antioxidant compounds (Vitamin E-C family) and phenolic compounds [21].

ACKNOWLEDGEMENT

The authors are grateful to the DG-RSDT at the MESRS (Ministry of Scientific Research, Algeria) for the financial support. I thanks Mr. Racim Boudjemili for grammar corrections.

REFERENCES

9. Bizzz G, Benacerraf B, Halperm BN Effet de la vaccination par Plasmodium berghei irradié sur l’activité phagocytaire du...
Zerizer et al.

76

The Laboratory for Surgical Metabolism and Nutrition, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 1991; 215 (2): 114-119.

