ABSTRACT

Objective: Organic Cation Transporter1 (OCT1), was known as the highly polymorphism of polyspecific transporter. The genetic variability of OCT1 might alter the drug response, such as metformin, imatinib, levodopa and 5-Hydroxytryptamine Receptor Antagonist (5-HTRA) drugs. This study was aimed to know the variability of OCT1 gene in Indonesian Cancer patients.

Methods: The SNPs of OCT 1; rs12208357, rs55918055, rs34130495, rs34059508 and amino acid substitution Met420del were selected. Genotypes were established using Taqman assays and analysed on ABI 7500 realtime PCR System from Applied Biosystems according to manufacture’s protocol of allelic discrimination.

Results: There were no genetic variations found in the 202 Indonesian cancer patients according to the 4 SNPs included in this study and only 1.5% heterozygous were found in the Met420del. This finding is consistent with the previous studies in Japanese and Chinese population.

Conclusion: The further study is warranted to do the sequencing analysis which could find the most possible variants in Indonesian cancer patients.

Keywords: OCT1, Indonesian, Cancer.

INTRODUCTION

Organic Cation Transporter1 (OCT1), encoded by SLC22A1, was located in chromosome 6q26 and was known as largest superfamily of transporters. OCT1 was majoredly expressed in the liver, it means that the variations of this gene would affect the transport of the drug to the liver. Some of the mechanism was proposed as the mechanism which could explain the role of OCT1 polymorphisms to the drug response. The most possible mechanism was probably related to the drug disposition in the liver which relevant to the pharmacodynamics matter. For the drugs which are being the substrate of OCT1 and are metabolized majorly by CYP2D6 which was known highly polymorphism, probably need individualization of dose administration in different ethnicities.

In the previous studies of Caucasian subjects, the polymorphisms of OCT1 could alter the metformin, imatinib and levodopa response. Moreover, the newest study in Caucasian cancer patients found that the polymorphisms of OCT1 could affect the patients response to ondansetron and tropisetron as antiemetic drugs. Ondansetron and tropisetron, the 5-Hydroxytryptamine Receptor Antagonists (5-HTRA), are known as the antiemetics used in chemotherapy-induced nausea vomiting (CINV). In the previous study of Indonesian cancer subjects, the polymorphisms of 5-HT3B gene receptor, CYP2D6 and Multi Drug Resistance1 (MDR1) gene were not associated to the ondansetron response. However, there were still 30% patients experienced CINV after treated by highly emetogenic cytostatic agent. Thus, we should consider the OCT1 polymorphisms as the predictor of drug response, besides considering the subject characteristic.

The previous study in Japanese and Chinese subjects with diabetes mellitus disease suggested that new nonsynonymous variants found could affect the metformin response. However, the nonsynonymous variants found in the Caucasian subjects were not found in their study. Moreover, the previous study in Korean population also showed the nonsynonymous variants similar to the Vietnamese and Chinese and different variants from the Caucasians.

This study was aimed to find the variations of OCT1 gene in Indonesian cancer patients which could be related to the 5-HTRA drug response, since the association between the drug response and the other genes in the previous study were not found.

MATERIALS AND METHODS

SNPs selection

Five SNPs of OCT 1 were selected from the study of Tzetkou et al.; rs12208357 (amino acid substitution arginine61-to-cysteine), rs55918055 (amino acid substitution cysteine88-to-arginine), rs34130495 (amino acid substitution glycine401-to-serine), rs34059508 (amino acid substitution glycine465-to-arginine) and unknown rs number (amino acid substitution methionine420-to-deletion methionine). This study has been approved by the ethic committee of Medicine Faculty, University of Gadjah Mada, Yogyakarta. This study has been permitted by Faculty of Medicine Gadjah Mada University, Yogyakarta.

DNA collection

The deoxyribonucleic acid (DNA) was collected from 202 saliva samples of Indonesian cancer patients. Saliva was collected at least one hour after eating meal. The patients were asked to rinse their mouth before the saliva collection with plain water. After the saliva was collected in the saliva container, the container was closed and mix gently for 10 seconds. The containers were put in the room with ambient temperature.

DNA extraction

40µl DNA purifier was added to 1000 µl saliva solution in the microcentrifuge tube and vortex the tube for 5 seconds. The tube was incubated in the ice for 10 minutes then it was centrifuged in the room temperature for 5 minutes at 13,000 rpm. 1000 µl supernatant was transferred into clean tube and was added by 1000µl-100% ethanol. The solution was mixed gently for 10 times and allowed in the room temperature for 10 minutes or until the DNA was fully precipitated. The supernatant was removed carefully and 100 µl TE buffer was added to DNA pellet. The solution was vortexed for 5 seconds then incubated in the room temperature for 1-2 days. DNA was quantified using Nanodrop (Isogen, Maarssen, The Netherlands).
Allelic Discrimination

Genotypes were established using Taqman assays and analysed on ABI 7500 realtime PCR System from Applied Biosystems (Nieuwerkerk aan den IJssel, The Netherlands) according to the protocol of allelic discrimination. The solution for allelic discrimination were contained of Taqman Universal PCR Master Mix, 2X (12.50 µl) and SNP genotyping assay (125 µl) for 96 wells plate in each reaction. 13.75 µl solution was pipette in to each well of the plate. The plate was performed for pre-read and amplification running of allelic discrimination. The amplification running used the condition of 2 minutes of 50°C and 10 minutes of 95 ºC for initial steps and 40 cycles of 15 seconds 95 ºC, 40 cycles of 1 minutes 60 ºC for PCR. This system is known as defaults times and temperature in ABI 7500 realtime PCR System from Applied Biosystems. After the amplification procedures, the post-read assay was performed in the machine to get the genotype data.

Statistical analysis

The genotype frequencies were assessed for deviations from Hardy Weinberg equilibrium and the genotype distributions did not deviate from Hardy Weinberg equilibrium.

RESULTS

We did not find the heterozygous and homozygous mutant over the rs12208357 (amino acid substitution arginine61-to-cysteine), rs55918055 (amino acid substitution cysteine88-to-arginine), rs34130495 (amino acid substitution glycine401-to-serine), rs34059508 (amino acid substitution glycine465-to-arginine). However, there were 1.5% heterozygous found in unknown rs number (amino acid substitution methionine420-to-deletion methionine). The Table 1 showed the finding of this study.

<table>
<thead>
<tr>
<th>SNP</th>
<th>Variants</th>
<th>% from 202 subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs12208357</td>
<td>Wild type: CC</td>
<td>100</td>
</tr>
<tr>
<td>rs55918055</td>
<td>Wild type: TT</td>
<td>100</td>
</tr>
<tr>
<td>rs34130495</td>
<td>Wild type: GG</td>
<td>100</td>
</tr>
<tr>
<td>rs34059508</td>
<td>Wild type: GG</td>
<td>100</td>
</tr>
<tr>
<td>Met420del</td>
<td>Wild type: ATG</td>
<td>98.5</td>
</tr>
<tr>
<td></td>
<td>Heterozygous: del/ATG</td>
<td>1.5</td>
</tr>
</tbody>
</table>

DISCUSSION

This study was aimed to understand the variability of OCT1 gene in Indonesian Cancer patients. Our finding was consistent with the previous study in Japanese and Chinese. This previous study found the other new nonsynonymous variants which associated to the metformin response. The Q97K, P117L and study found the other new nonsynonymous variants which the previous studies in Japanese and Chinese. This previous in Indonesian Cancer patients. Our finding was consistent with which could find the most possible variants in Indonesian cancer patients. The further study is warranted to do the sequencing analysis for the pharmacogenetic studies in Indonesian population.

CONCLUSION

The further study is warranted to do the sequencing analysis which could find the most possible variants in Indonesian cancer patients. To consider the similar SNPs involved in previous studies of Japanese, Chinese and Korean population would be a challenge for the pharmacogenetic studies in Indonesian population.

ACKNOWLEDGEMENT

The author thank to Tahar van de Straaten, Judith Wessels and Renee Baak-Pablo, Toxicology Laboratory, Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, who gave assistance in performing the laboratory analysis of this part.

REFERENCES


C: cytosine; T: Thymine; A: Adenine; G: Guanine; del: deletion; Met: methionine

Table 1: It shows the genotyping assay result over the five SNPs of OCT1

Funding

This study is supported by the Netherlands organization for international cooperation in higher education (Nuffic).

Conflict of interest

The authors did not have conflict of interest.

