SYNTHESIS, CHARACTERIZATION AND ANTICONVULSANT ACTIVITY OF SUBSTITUTED 4-CHLORO-2-(4-PIPERAZIN-1-YL) QUINAZOLINES

DEBKIRON MUKHERJEE*, A.MUKHOPADHYAY*, K.SHRIDHARA BHAT, A.M.SHRIDHARA*, K.S.RAO

Chemical Engineering Department, Jadavpur University, Kolkata-700032, India, * Alkem Laboratories Limited, 473D2, 13th Cross, 4th Phase, Peenya Industrial Area, Bangalore-560058.

Email: debkironmukherjee@gmail.com

Received: 07Apr 2014 Revised and Accepted: 12 May 2014

ABSTRACT

Objective: Substituted 4-chloro-2-(4-piperazin-1-yl) quinazolines: Synthesis and anticonvulsant activity.

Methods: In the present study, the 2, 4-dichloroquinazoline (5) was synthesized and the compound was reacted with different N-substituted piperazines to obtain a series of title compounds [6(A-G)]. All the new title compounds were characterized by spectral data and were screened for anticonvulsant activity.

Results: The reported compounds were synthesized using the process disclosed by us in U.S.Pat.No.8. 410,268B2. In our present work, we have achieved substantially good yields and purity.

Conclusion: Aryl substituted piperazines exhibited better protection against subcutaneous (s.c.) Pentylentetrazol induced seizures.

Keywords: Synthesis, Quinazolines, Piperazines, Characterization, Anticonvulsant activity.

INTRODUCTION

Quinazoline heterocycle consists of two fused six membered aromatic rings benzene & pyrimidine. The research on biological activity of quinazoline compounds started when the compound 2-methyl-1,3-aryl-4-quinazoline derivative was synthesized. In 1968 only two derivatives were used, Methaqualone as soporific & anticonvulsant and Quinathazone as diuretic. By 1980, about 50 kinds of derivatives of this class with different medicinal and biological actions like soporific, sedative, tranquilizing, analgesic, anticonvulsant, antitussive, myorelexant, antirheumatic, hypotensive, antiallergic, bronchodilating, anti diabetic, chologogue, diuretic, cystatic, antimalarial, spermicidal etc [1] were identified. The anticonvulsant activity was attributed to its ability to bind the non-competing site of a-amino-3-hydroxy-5-methyl-4-isooxazolopropionic acid (AMPA) receptors. In a previous report [2], compounds were synthesized and tested for their anticonvulsant activity, which was comparable to that of diazepam. As a result, these compounds are potential leads for further design of more active compounds. Since the discovery of methaqualone as a sedative hypnotic [3-4], the research for new anticonvulsant drugs with reduced toxicity and fewer side effects has been continuous. It has been reported that replacement of the methyl group by some other functionalities such as alkylthiomyethyl or alklyoxyethyl groups reportedly yielded structural analogues which retained the anticonvulsant activity [5-6]. Piperazines are a broad class of chemical compounds with many important pharmacological properties. Piperazine and substituted piperazine nuclei had constituted an attractive pharmacological scaffold present in various potent marketed drugs. The incorporation of piperazine is an important synthetic strategy in drug discovery due to its easy modifiability, proper alkalinity, water solubility, the capacity to form hydrogen bonds and adjustment of molecular physicochemical properties. This di-nitrogen moiety has been an inseparable component of plethora of drugs. A number of substituted piperazines possess significant pharmacological action such as antihistaminic [7-8], antimicrobial [9], acetylcholinesterase inhibitors [10], antimalarial [11], dopamine transporter [12-13], D2/D4 antagonist [14], MC4Receptor [15], and HIV-protease inhibitor [16-17]. It has been reported that several of piperazine derivatives showed anticonvulsant properties in several models of seizures. Some piperazine derivatives displayed protection against electroshock (MES) induced seizures, low neurotoxicity (TOX) and little protection in subcutaneous pentylentetrazol induced seizures (ScPTZ). Some of them, I.e., 1, 4-bis[(4-chloro-3-methyl)-phenoxyethyl]-piperazine dihydrochloride prevent maximal electroshock seizures in mice with an ED50 of 115.9 mg/kg and protective index PI = 2.05 in the MES test in mice which is higher than that of valproate (PI = 1.7) [10]. The present study is a continuation to the various efforts aiming to locate novel synthetic anticonvulsant lead compounds. Some new quinazoline analogues prepared in our study possessed remarkable anticonvulsant activity. The new series of quinazoline analogues is designed to accommodate N-substituted piperazines and benzothiazolone rings at C-2. These structure alterations and modifications are expected to contribute to the anticonvulsant activity of the quinazoline nucleus.

MATERIALS AND METHODS

Chemical and Instrument

Anthraniolic acid, potassium cyanate, N, N-dimethyl aniline, Phosphorous oxychloride were obtained from local dealer. Piperazine, 3-[piperazinyl-1-yl] benzo[d] isothiazole, 2-[piperazin-1-yl] phenol, 2-[piperazin-1-yl] ethanol, 2-[piperazin-1-yl] methoxy) ethanol, 1-(2, 4-dichlorophenyl) piperazine and Morwet D425 were provided by Alkem Laboratories Limited. Analytical TLC was performed on Silica plates- GF254 (Merck) with visualization by UV or in iodine. Melting points were determined by MP50 (Mettler Toledo) and are uncorrected. The IR spectra (KBr, λ Max, cm⁻¹) were run on Perkin Elmer FTIR Spectrophotometer. 1H-NMR (in CDCl3/ DMSO-d6) spectra were recorded using Bruker -400 with TMS as internal standard. MS spectra were recorded on Bruker DPX 200. Elemental analyses were performed on Carlo Erba 1108 elemental analyzer and were within ± 0.4% of theoretical values. All the chemicals used were of Laboratory grade.

Synthesis of Quinazoline -2,4(1H,3H)-dione[Benzyolene urea] (4)

In a 3-l round bottom reactor, a mixture of 20 g (0.146 mole) of anthranilic acid, 700 ml of warm water (35°C) and 11 ml (1.6 g., 0.19 mole) of glacial acetic acid were stirred mechanically and allowed to cool to room temperature. A freshly prepared solution of 15 g (0.185 mole) of potassium cyanate in 50 ml of water was then added drop wise with stirring over a period of fifteen to twenty minutes. The resulting pasty mixture was stirred for
twenty minutes and then 200 g (5 moles) of flaked sodium hydride was added in slowly in small portions. During this addition the reaction mixture was kept below 40°C by cooling in a cold-water bath. A clear solution was obtained momentarily, but in a short time a fine granular precipitate of the hydrated Benzoyleurea was precipitated. The precipitate was cooled overnight in an ice box. The precipitated sodium salt was collected on a Buchar funnel, using a hardened filter paper. The colourless salt was dissolved in 1 l. of hot water (90–95°C), and the solution was filtered and heated to boiling in a 3-l. beaker. The Benzoyleurea was precipitated by adding dilute sulphuric acid (1:1) with vigorous stirring until the liquor was acid to litmus. The product separates as a hydrate which forms small, lustrous, colourless needles. The material was collected on a Buchar funnel, washed with 200 ml of water, and dried in an oven at 100°C. The yield was 95.2–95.5 g. Melting point: Above 300°C

Synthesis of 2, 4-dichloroquinazoline (5)

2,4-dichloroquinazoline was obtained by refluxing 10.0 g (0.061 mole) of quinazoline-2,4-dione (Benzoyleurea) in 14.2 g (0.092 mole) of Phosphorous oxychloride with 7.4 g (0.061 mole) of N,N-dimethylaniline at 108°C . The progress of the reaction was checked by thin layer chromatography (Eluent: ethyl acetate: hexane=8:2). After the completion, the reaction mass was cooled to room temperature and hence poured onto ice water under stirring. An off white viscous precipitate formed. The resultant mass was basified with Aqueous 20% w/v of Potassium carbonate to pH 8.0. After reaching the mentioned pH, the reaction mass was extracted with 200.0 ml Dichloromethane. The dichloromethane layer was given a water wash, dried over sodium sulphate and hence distilled to obtain 7.0 g 2,4-dichloroquinazoline. Melting point: 118–120°C

Synthesis of substituted 4-chloro-2-(4-piperazin-1-yl) quinazoline derivatives [6(A–G)]

0.0075 mole of substituted piperazines, 0.005 mole of 2,4-dichloroquinazoline, 0.017 mole of Sodium carbonate, water 5.2 times based on 2,4-dichloroquinazoline weight and 1% of dispersing agent was added. The precipitated sodium salt was collected on a Büchner funnel, washed with 200 ml of water, and dried in an oven at 100°C. The yield was 95.2–95.5 g. Melting point: Above 300°C

2-[4-(4-chloroquinazolin-2-yl) piperazin-1-yl] ethanol, 6C

M.P.198°C; Yield: 84%; MS: 292.1 (100.0%), 294.1 (32.5%), 293.1 (16.7%), 295.1 (4.9%); IR max cm⁻¹: 3315.12 (OH); 1678.12 (HC=N); 1065 (C=O); 750.15 (C=C)

1HNMR(DMSO D₆): δ=8.13 (1H, d, quinazoline aromatic CH); 7.85 (1H, t, quinazoline aromatic CH); 7.75 (1H, d, quinazoline aromatic CH); 7.58 (1H, t, quinazoline aromatic CH); 3.82 (2H,m,-CH₂); 3.14 (4H,m,piperazine CH₂); 2.64 (4Hm,piperazine CH₂); 2.44 (2Hm,piperazine CH₂); 2.01 (3Hs, OH)

13CNMR: 49.2(4C, piperazine CH₂); 115-123(4C, Aromatic CH); 116.2(1C, quinazoline aromatic CH); 125-139 (4C, quinazoline aromatic CH); 142.4(1C, COH); 152.8(1C, quinazoline C=N); 146.8(1C, phenyring C=N); 160.6(1C, quinazoline C=C); 184.2(1C, quinazoline N=C=N); Elemental analysis:C-63.44%,H-5.03%,Cl-14.90%,N-14.64%

2-[4-(4-chloroquinazolin-2-yl) piperazin-1-yl] methoxy) ethanol, 6D

M.P.201°C; Yield: 81%; MS: 336.14 (100.0%), 338.13 (32.0%), 337.14 (17.7%), 339.14 (5.7%); IR max cm⁻¹: 3321.12 (OH); 3023.12 (Ar-CH); 1466.56 (Ar=CH); 1678.12 (HC=N); 1084 (C=O); 761.15 (C=C)

1HNMR(DMSO D₆): δ=8.15 (1Hd,quinazoline aromatic CH); 7.82 (1Hd,quinazoline aromatic CH); 7.17 (1Hd,quinazoline aromatic CH); 7.53 (1Hd,quinazoline aromatic CH); 3.55-3.82 (6H,m,-CH₂); 3.14 (4Hm,piperazine CH₂); 2.64 (4Hm,piperazine CH₂); 2.44 (2Hm,-CH₂); 2.01 (3Hs, OH)

13CNMR: 50.6-55.6 (4C, piperazine -CH₂); 54.8 (1C, -CH₂); 61.4 (1C, -CH₂); 68.4 (1C, CO); 72.6 (1C, CO); 116.2(1C, quinazoline aromatic CH); 125-139 (4C, quinazoline aromatic CH); 152.8(1C, quinazoline C=N); 160.6(1C, quinazoline C=C); 184.2(1C,quinazoline N=C=N); Elemental analysis:C-63.44%,H-5.03%,Cl-14.90%,N-14.64%

4-chloro-2-[4-(2, 3-dichlorophenyl) piperazin-1-yl] quinazoline, 6E

M.P.218°C; Yield: 84%; MS: 392.04 (100.0%), 394.03 (30.9%); IR max cm⁻¹: 3023.12 (Ar-CH); 1466.56 (Ar=CH); 1678.12 (HC=N); 759.15 (C=C)

1HNMR(DMSO D₆): δ=8.1 (1Hd,quinazoline aromatic CH); 7.85 (1H, t, quinazoline aromatic CH); 7.73 (1H, d, quinazoline aromatic CH); 7.5 (1H, t, quinazoline aromatic CH); 7.35 (2H, d, phenyl aromatic CH); 7.2 (1H, aromatic -CH); 4.0 (4H, m, piperazine CH₂); 3.35 (4H, m, piperazine CH₂); 3.55-3.82 (6H,m,-CH₂); 3.14 (4Hm,piperazine CH₂); 2.64 (4Hm,piperazine CH₂); 2.44 (2Hm,-CH₂); 2.01 (3Hs, OH)

13CNMR: 49.1-49.6 (4C, piperazine -CH₂); 113.8,119,129.2(3C,Phenyl ring)116.2(1C,quinazoline aromatic CH);123.8(1C,C=O);134.3(1C,C=O); 125-139 (4C, quinazoline aromatic CH); 152.0(1C, quinazoline C=N); 160.6(1C, quinazoline C=C); 184.2(1C,quinazoline N=C=N); Elemental analysis:C-63.44%,H-5.03%,Cl-14.90%,N-14.64%

4-chloro-2-[4-(methylpiperazin-1-yl) quinazoline, 6F

M.P.218°C; Yield: 84%; MS: 262.10 (100.0%), 264.10 (32.2%); IR max cm⁻¹: 3028.52 (Ar-CH); 1476.56 (Ar=CH); 1678.12 (HC=N); 759.15 (C=C)

1HNMR(DMSO D₆): δ=8.1 (1Hd,quinazoline aromatic CH); 7.85 (1H, t, quinazoline aromatic CH); 7.73 (1H, d, quinazoline aromatic CH); 7.5 (1H, t, quinazoline aromatic CH); 7.35 (2H, d, phenyl aromatic CH); 7.2 (1H, aromatic -CH); 4.0 (4H, m, piperazine CH₂); 3.35 (4H, m, piperazine CH₂); 3.55-3.82 (6H,m,-CH₂); 3.14 (4Hm,piperazine CH₂); 2.64 (4Hm,piperazine CH₂); 2.44 (2Hm,-CH₂); 2.01 (3Hs, OH)

13CNMR: 50.6-55.6 (4C, piperazine -CH₂); 54.8 (1C, -CH₂); 61.4 (1C, -CH₂); 68.4 (1C, CO); 72.6 (1C, CO); 116.2(1C, quinazoline aromatic CH); 125-139 (4C, quinazoline aromatic CH); 152.8(1C, quinazoline C=N); 160.6(1C, quinazoline C=C); 184.2(1C,quinazoline N=C=N); Elemental analysis:C-63.44%,H-5.03%,Cl-14.90%,N-14.64%
4-chloro-2-(4-(4-chloroquinazolin-2-yl) piperazin-1-yl) quinazoline, 6G: M.P. 249°C; Yield: 80%; MS: 410.08 (100.0%); IR max cm⁻¹: 3028.52 (Ar-CH); 1476.56 (Ar C=C); 1678.02 (HC=N); 756.15 (C-Cl).

¹HNMR(DMSO D₆): δ=8.1(2H,d,quinazoline aromatic CH); 7.8-7.9 (4H,m,quinazoline aromatic CH); 7.58 (2H,m,quinazoline aromatic CH); 3.24 (8H,m,piperazine CH₂).

¹³C NMR: 49.6 (4C, piperazine -CH₂); 116.5 (2C, quinazoline CH); 125-139 (8C, quinazoline aromatic CH); 152.8 (2C, quinazoline C-N); 184.1 (2C, quinazoline N=C=N).

Elemental analysis: C-58.41%, H-3.92%, Cl-17.24%, N-20.43%.

Scheme 1: Synthesis of substituted 4-chloro-2-(4-piperazin-1-yl) quinazolines 6A-G

Evaluation of anticonvulsant activity

Experimental animals

Male albino Swiss mice, weighing 20 - 25 g, were used to study the effect of the synthesized compounds on subcutaneous (s.c.) Pentylenetetrazole induced seizures. Female animals were excluded because of the fact that estrous cycle could influence their activity threshold.

The animals were housed in a standard cage at room temperature in a 12/12 light dark cycles. The animals were fed on standard mice pellet and water ad libitum. All experiments were conducted in accordance with animal use ethics as accepted internationally.

Acute toxicity studies

Compounds were administered subcutaneously (s.c.) in doses of 50, 100, 200, 500, 1000, 1500 and 2000 mg/kg to different groups of mice, each group consisting of six animals (n = 6). The mice were also observed for 24 hours. The final LD₅₀ was calculated as the square root of the product of the lowest lethal dose and the highest non-lethal dose i.e. the geometric mean of consecutive doses for which 0 and 100% survival rates were recorded [19].

2-Pentylenetetrazole (s.c.,PTZ) induced seizure test

Forty five adult albino mice were randomly divided into five mice each. Group one (Standard) received 40 mg/kg, body weight of Rufinamide intraperitonealy (i.p.), and group two (Control) was given Pentylenetetrazole subcutaneously. (Dose: 40 mg/kg, body weight, s.c.). The synthesized compounds 6(A-G) were administered to group’s three to nine (treated groups) intraperitoneally, 50 mg/kg of body weight. Thirty minutes later, 40 mg/kg of freshly prepared solution of Pentylenetetrazole was administered subcutaneously to each mouse. The onset of action, number of rats showing tonic convulsion as well as mortality where recorded in each group [20].
RESULTS

Acute toxicity study

The subcutaneously (s.c.) LD50 of the drugs was found to be 100 mg Kg⁻¹.

Study on the effects of the synthesized compounds on the convulsive activity of 40 mg/Kg of subcutaneous Pentylenetetrazole in mice.

All the control animals exhibited threshold seizures. The synthesized compounds exhibited some anticonvulvant effect on seizure induced by subcutaneous Pentylenetetrazole. It also protected 100% of the animals from death compared to the control group where mortality of 100% was recorded.

The observations are tabulated in Table 1.

DISCUSSION

The 2-chloro position of the 2, 4-dichloroquinazoline was replaced by substituted piperazines. The reaction was facilitated by the use of Morwet-D425. The major problems faced in this type of reactions were the incompletion of the reaction, the formation of sticky material, and difficult stirrability of the reaction mass. These problems are evident in smaller scales but especially acute in large scale manufacturing. This results in lesser purity and lower yields. In U.S.Pat.No.8,410,268B2 [21] we have disclosed a process for the preparation of Ziprasidone, which involves the same procedure. In our present work, we have achieved substantially good yields and purity. All the compounds were screened for anticonvulsan activity. The substitutions involving aryl substituted piperazines showed better protection against subcutaneous (s.c.) Pentylenetetrazole induced seizures.

CONCLUSION

The protection offered by the synthesized compounds 6A, 6B, 6C and 6D against subcutaneous (s.c) Pentylenetetrazole induced threshold seizure, the prevention of the onset of seizure and its protective effect against mortality in mice suggests that the synthesized compounds may be effective in the management of petit mal epilepsy since all antiepileptic drugs that are effective in the treatment of petit mal epilepsy exhibit dose dependent suppression of seizure induced by subcutaneous (s.c.) Pentylenetetrazole [22].

ACKNOWLEDGEMENT

The authors are thankful to Alkem Laboratories Limited and Skanda Life Sciences Private Limited for providing necessary facilities.

REFERENCES


