VALIDATED HPLC METHOD FOR SIMULTANEOUS DETERMINATION OF SITAGLIPTIN, METFORMINE AND ATORVASTATIN IN PURE FORM AND IN PHARMACEUTICAL FORMULATIONS

NASHWAH GADALLAH M1,2.
Department of pharmaceutical chemistry, Princess NourahbintAbdelrahman University. Riyadh, Saudi Arabia, Department of analgesic and narcotics, National Organization of drug control and research, Cairo, Egypt.
Email: nashwahgadallah@ymail.com

Received: 19 Apr 2014 Revised and Accepted: 24 May 2014

ABSTRACT

Objective: The main objective of current study is to develop and validate a selective HPLC method for determination of the studied drugs either in single or in mixture form. The method is rapid, precise, accurate and specific for the separation and determination of sitagliptin phosphate, metformin hydrochloride, and atorvastatin calcium in pure form and in pharmaceutical formulations in presence of quetiapine as an internal standard.

Methods: This method is based on HPLC separation of the three drugs on HyperSil GOL column (150x4.6mm, 5µ). The mobile phase-A was prepared by mixing buffer (containing 1% of concentrated nitric acid 65% and 2% of concentrated ammonia solution 28-32%, pH ≈8.5) and methanol in the ratio 30:70. The flow rate is 1 ml/min, with isocratic elution and UV detection at 254nm. The retention time of each of sitagliptin phosphate, metformin hydrochloride, atorvastatin, quetiapine internal standard was found to be at 3.384, 2.640, 4.837 or 6.000 min. respectively.

Results: the proposed method was successfully applied for the quantitative determination of each of sitagliptin, metformin and atorvastatin in single component or as combined mixture. The linear regression analysis data for calibration plots showed a good linear relationship over a concentration range of 0.125-100 µg/ml for sitagliptin, 0.625-25 µg/ml for metformin, and 0.3125-100 µg/ml for atorvastatin. The mean values of the correlation coefficient, slope and intercept were 0.9976, 96.92 and +274.21 for sitagliptin, 0.9995, 218.82 and +14.97 for metformin, 0.9994, 828.87 and + 81.95 for atorvastatin. The method was validated as per the ICH guidelines. The limit of detection (LOD) and limit of quantification (LOQ) was 0.82 and 2.46 µg/ml for sitagliptin phosphate, 0.4 and 1.2 µg/ml for metformin, and 0.09 and 0.27 µg/ml for atorvastatin.

Conclusion: The developed and validated HPLC method and the statistical analysis showed that the method is repeatable and selective for the estimation of the three studied drugs in presence of quetiapine as an internal standard.

Keywords: Metformin, Sitagliptin, Atorvastatin and Chromatography.

INTRODUCTION

Sitagliptin phosphate monohydrate{(3R)-3-amino-1-[3-(trifluoromethyl)-6,8-dihydro-5H-[1,2,4]triazolo[4,3-a]pyrazin-7-yl]-4-(2,4,5-trifluorophenyl)butan-1-one } (fig.1)[1] is an oral hypoglycemic drug of the dipeptidyl peptidase-4 (DPP-4) inhibitor class. DPP-4 enzyme breaks down the incretin hormones including glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). GLP-1 and GIP are gastrointestinal hormones released in response to meals. By preventing GLP-1 and GIP inactivation, they are able to increase the secretion of insulin and suppress the release of glucagon by pancreas this drive blood glucose level toward normal [2].

As a number of individuals affected by diabetes are continuing to increase worldwide, the need for effective management assumes ever greater urgency. Newer classes of medications, particularly those works via the incretin pathway, achieve glucose lowering and minimize risks associated with traditional therapies. Ideally, combination therapies should be well tolerated, convenient to take, have few contraindications, have a low risk of hypoglycemia and weight gain, and reasonably effective over both the short and long term such as the combination of sitagliptin and metformin [3].

Metformin (1-carbamimidamido-N,N-dimethylmethanimidamide) (fig 1) [1] is an anti-diabetic drug from the biguanide class of oral hypoglycemic agents. It exerts its glucose lowering effect primarily through increased hepatic insulin sensitivity and the resultant suppression of hepatic glucose output. Metformin may also modestly enhance glucose uptake in peripheral tissues and increase glucose metabolism in the splanchic bed [4].

Current American Diabetes Association guidelines suggest that all adult with diabetes should be managed to achieve low density lipoprotein (LDL) cholesterol less than 100 mg/dl employing statins as first-line therapy [5].

Atorvastatin ([R-(R*, R*)]-2-(4-fluorophenyl)-δ-dihydroxy-5-(1-methylthyl)-3-phenyl-4-[(phenylamino)carbonyl]-1Hpyrrole-1-heptanoic acid) (fig.1) [1] is a lipid-lowering agent that specially, competitively, and reversibly inhibits 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, which catalyzes the conversion of HMG-CoA to mevalonic acid, the rate limiting step in cholesterol biosynthesis [6,7]. From the previous information it is reasonable to use sitagliptin, metformin and atorvastatin combination in the management of type-2 diabetes mellitus. Literature survey reveals several methods for the determination of sitagliptin in pharmaceutical preparation or biological fluids including spectrophotometry [8-10], HPLC [11, 12], UPLC [13], liquid chromatography-tandem mass spectrometry [14-16], gas chromatography [17], and capillary electrophoresis [18].

Several methods have also been described for the determination of metformin either alone or in combination with various drugs, such as spectrophotometry [19-21], LC [22-24], LC-MS-MS [25-27] and capillary electrophoresis [28-30]. As per the literature, several methods have been reported for the determination of atorvastatin alone or with some other drugs [31-42].

The main objective of this work is to develop a validated, selective and inexpensive HPLC method for separation and quantitative determination of sitagliptin, metformin, and atorvastatin, which was not done before. Using an internal standard in the method makes it suitable for plasma or urine application.
MATERIALS AND METHODS

Reagents and Chemicals

All the used solvents were of HPLC grade, concentrated nitric acid 65%, and concentrated ammonium hydroxide solution 28-30% supplied from Sigma-Aldrich (St. Louis, Missouri, USA). Chromatographic-grade water was produced by a Milli-Q system (Millipore, Billerica, MA). The reference standards of metformin hydrochloride, sitagliptin phosphate, and atorvastatin calcium were obtained as gift samples from Saudi Food & Drug Authority. Sitagliptin phosphate monohydrate (equivalent to 100 mg sitagliptin) in Januvia tablets manufactured by Merck Sharp and Dohme Ltd. Atorvastatin calcium (equivalent to 20 mg atorvastatin) in lorvast tablets manufactured by Tabuk pharmaceuticals Co., Tabuk, Saudi Arabia. Metformin hydrochloride, (equivalent to 500 mg metformine) in Dialon tablets manufactured by Julphar, Gulf pharmaceutical industries.

Preparation of buffer

The buffer solution consists of water containing 1% of concentrated nitric acid 65%, 2% concentrated ammonium hydroxide solution 28-30%, and adjust pH 10.8.

Preparation of mobile phase

The mobile phase was prepared as a mixture of buffer: methanol in the ratio 30:70 v/v. The mobile phase was filtered on 0.45 µm nylon filter.

Preparation of standard stock solutions

Standard stock methanicold solutions of the three studied drugs and the internal standard were prepared in concentrations of, (1 mg /ml) of each of metformin, sitagliptin, metformin orquetiapine and (100 µg/ml) of atorvastatin. Solution were prepared by transferring an accurately weighed 100 mg of each of sitagliptin, metformin orquetiapine, and 10 mg of atorvastatin into separate 100 ml volumetric flasks containing 40 ml of methanol, sonication for 5 min.; and cooled to room temperature. The volume was made up to the mark by methanol. The stock solutions were stored at 2-8°C.

Preparation of sample solution

Ten tablets of each of studied drug were accurately weighed, transferred to a clean, dry mortar and ground to fine powder. A powder equivalent to 100 mg sitagliptin, 100 mg metformin, and 20 mg atorvastatin were transferred into a separate 100 ml volumetric flask, 40 ml methanol was added, sonication for 10 min.; and diluted to the volume with methanol. This solution was filtered through 0.45 µm pore size nylon filter membrane.

Instrument and Chromatographic conditions

HPLC system consists of Agilent HP 1100 system equipped with an auto sampler (Waldbronn Germany), quaternary pump, auto injector, column compartment and photodiode array (PDA) detector. The used analytical column was HyperSil GOLD (150 mmx4.6 mm-4µm). Mobile phase was (Buffer: Methanol in ratio 30:70 v/v). The mobile phase was filtered through 0.45 µm pore size nylon filter membrane. The method applied isocratic elution with flow rate 1 ml/min, and injection volume 10 µl. The column was at room temperature. The method used UV-detection at 254 nm and the run time was 7 min.

Optimization of HPLC method

All drugs were subjected to chromatographic analysis using mobile phases of different pH values, flow rates and different stationary phases. The changes in the retention time, sensitivity, and selectivity of all drugs were noted as a function of changing mobile phase, pH and stationary phase. Initially methanol-water in different ratios was tried but incomplete separation of peaks was observed, then acetone-triethyl acetate: water and acetone-triethyl acetate: buffer in different ratios and different pH values was tried but splitting of peaks and low sensitivity were observed. Later methanol with buffers in different pH values were tried, the best results were given on using pH 8, then different ratios of buffers: methanol were tried until the best separation, resolution, peak symmetry and selectivity were obtained at ratio 30:70 v/v of mobile phase with flow rate 1 ml/min on HyperSil GOLD (150x4.6mm-4µm). Fig. 2 shows the overlaid spectra of the three studied drugs, several wavelengths for UV-detection were tried (Fig.3) and best sensitivity was obtained at 254 nm as shown in (Fig. 4).

RESULTS AND DISCUSSIONS

Optimization of the chromatographic conditions

The objective of this chromatographic method development was reducing analysis time, maintaining good efficacy, retention time below 7 minutes, along with resolution between the studied drugs and the internal standard. The chromatographic separation was achieved using HyperSil GOL column (150x4.6mm, 5µ), mobile phase methanol: buffer pH 8 in a ratio 30:70. The flow rate was 1 ml/min, with isocratic elution and UV detection at 254 nm.

Validation of the method

Validation of the optimized HPLC method was carried out with respect to the following parameters.
Accuracy

Accuracy of the method was verified by studying recovery at three different concentrations of sitagliptin, metformin, and atorvastatin by replicate analysis (n = 3). The results obtained from the determination of accuracy, expressed as percentage recovery, were recorded in (Table 2).

Linearity and range

Linearity of the method was studied by injecting six concentrations of methanolic solution of the studied drugs in concentration range of 3.125-100 µg/ml for sitagliptin phosphate, 0.625-25 µg/ml for metformin hydrochloride, and 0.3125-10µg/ml for atorvastatin triplicate into the HPLC system keeping the injection volume constant. The peak areas were plotted against the corresponding concentrations to obtain the calibration curves Fig. 4, 5, 6. The average correlation coefficient (R\textsuperscript{2}) was observed to be ≥0.997 during the course of validation.

Precision

The precision of the method was verified by repeatability and intermediate precision studies. Repeatability was performed by analysis of three different concentrations six times on the same day. The intermediate precision of the method was checked by analysis of three different concentrations on three different days [43]. Results were recorded in (Table 1).
Limit of detection (LOD) and limit of quantification (LOQ)

The LOD and LOQ were separately determined on the basis of standard calibration curve. The residual standard deviation of the regression line or the standard deviation of y-intercepts of regression lines was used to calculate LOD and LOQ. Sensitivity of the proposed method was estimated in terms of Limit of Detection (LOD) and Limit of Quantitation (LOQ). LOD = 3.3 S.D/S and LOQ = 10 S.D/S, where S.D is the residual standard deviation of regression line and S is the slope of the line. The results of LOD and LOQ obtained for studied drugs were recorded in (Table 3).

Robustness of the method

The robustness of the proposed HPLC method was assessed by the ability to remain unaffected by small changes in experimental conditions. Change in flow rate by ± 0.2% and small changes in mobile phase organic strength and in pH by ±2% has no significant effect on chromatographic resolution.

Table 1: Results of precision study.

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Concentration (µg/ml)</th>
<th>Repeatability (n = 6)</th>
<th>Intermediate Precision (n = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R.S.D.%</td>
<td>%RSD</td>
<td>R.S.D.%</td>
</tr>
<tr>
<td>Metformin hydrochloride</td>
<td>5</td>
<td>1.413</td>
<td>1.008</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.567</td>
<td>0.490</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.456</td>
<td>0.289</td>
</tr>
<tr>
<td>Sitagliptin phosphate</td>
<td>25</td>
<td>0.298</td>
<td>1.008</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.289</td>
<td>1.008</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>1.008</td>
<td>1.008</td>
</tr>
<tr>
<td>Atorvastatin</td>
<td>2.5</td>
<td>0.490</td>
<td>1.465</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.435</td>
<td>1.520</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.379</td>
<td>1.285</td>
</tr>
</tbody>
</table>

Table 2: Results of accuracy study

<table>
<thead>
<tr>
<th>Drugs (5µg/ml)</th>
<th>Metformin Concentration (µg/ml)</th>
<th>%Recovery</th>
<th>Statistical Analysis</th>
<th>Sitagliptin Concentration (25 µg/ml)</th>
<th>%Recovery</th>
<th>Statistical Analysis</th>
<th>Atorvastatin Concentration (2.5µg/ml)</th>
<th>%Recovery</th>
<th>Statistical Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>98.00</td>
<td>Mean</td>
<td>99.33</td>
<td>97.80</td>
<td>Mean</td>
<td>97.60</td>
<td>99.98</td>
<td>Mean</td>
<td>99.80</td>
<td>0.1352</td>
</tr>
<tr>
<td>101.00</td>
<td>SD</td>
<td>1.247</td>
<td>99.00</td>
<td>SD</td>
<td>1.2328</td>
<td>99.65</td>
<td>SD</td>
<td>0.1352</td>
<td></td>
</tr>
<tr>
<td>99.00</td>
<td>%RSD</td>
<td>1.255</td>
<td>96.00</td>
<td>%RSD</td>
<td>1.2622</td>
<td>99.79</td>
<td>%RSD</td>
<td>0.1354</td>
<td></td>
</tr>
<tr>
<td>Metformin (10µg/ml)</td>
<td>Sitagliptin (5µg/ml)</td>
<td>%Recovery</td>
<td>Statistical Analysis</td>
<td>Metformin (25 µg/ml)</td>
<td>%Recovery</td>
<td>Statistical Analysis</td>
<td>Atorvastatin (5 µg/ml)</td>
<td>%Recovery</td>
<td>Statistical Analysis</td>
</tr>
<tr>
<td>96.00</td>
<td>Mean</td>
<td>97.88</td>
<td>99.00</td>
<td>Mean</td>
<td>99.08</td>
<td>99.00</td>
<td>Mean</td>
<td>99.06</td>
<td>0.3412</td>
</tr>
<tr>
<td>99.00</td>
<td>SD</td>
<td>1.339</td>
<td>99.76</td>
<td>SD</td>
<td>0.5180</td>
<td>98.67</td>
<td>SD</td>
<td>0.3444</td>
<td></td>
</tr>
<tr>
<td>98.65</td>
<td>%RSD</td>
<td>1.386</td>
<td>98.50</td>
<td>%RSD</td>
<td>0.5227</td>
<td>99.50</td>
<td>%RSD</td>
<td>0.3444</td>
<td></td>
</tr>
<tr>
<td>Metformin (20 µg/ml)</td>
<td>Sitagliptin (75µg/ml)</td>
<td>%Recovery</td>
<td>Statistical Analysis</td>
<td>Metformin (25 µg/ml)</td>
<td>%Recovery</td>
<td>Statistical Analysis</td>
<td>Atorvastatin (10µg/ml)</td>
<td>%Recovery</td>
<td>Statistical Analysis</td>
</tr>
<tr>
<td>96.00</td>
<td>Mean</td>
<td>97.33</td>
<td>98.00</td>
<td>Mean</td>
<td>98.08</td>
<td>97.90</td>
<td>Mean</td>
<td>97.30</td>
<td>0.9202</td>
</tr>
<tr>
<td>97.00</td>
<td>SD</td>
<td>1.247</td>
<td>97.75</td>
<td>SD</td>
<td>0.3118</td>
<td>96.00</td>
<td>SD</td>
<td>0.9457</td>
<td></td>
</tr>
<tr>
<td>99.00</td>
<td>%RSD</td>
<td>1.281</td>
<td>98.50</td>
<td>%RSD</td>
<td>0.3180</td>
<td>98.00</td>
<td>%RSD</td>
<td>0.9457</td>
<td></td>
</tr>
</tbody>
</table>
Application
resolution for all peaks more than 1.5 as recorded in (Table 3) and internal standard were achieved. The peaks obtained were sharp, well separated at the baseline as shown in (Fig.4) and the specificity of the method was assessed applying the standard addition technique.

The resolution obtained was more than 2 between all drugs. The method showshig degree of accuracy and precision with less than 2% RSD. The method is simple, accurate, rapid, and precise and can easily be used for routine analysis of the three drugs in pure and formulated forms (tablets, capsules and powder). The method can also be applied in plasma and urine samples.

CONCLUSION
RP-HPLC method of 7 min runtime was successfully developed for the simultaneous determination of three drugs with good resolution (more than 2) between all drugs. The method showshig degree of accuracy and precision with less than 2% RSD. The method is simple, accurate, rapid, and precise and can easily be used for routine analysis of the three drugs in pure and formulated forms (tablets, capsules and powder). The method can also be applied in plasma and urine samples.

Specificity
The specificity of the method was accessed from the chromatogram where complete separation of sitagliptin, metformin, atorvastatin, and internal standard were achieved. The peaks obtained were sharp, well separated at the baseline as shown in (Fig.4) and the resolution for all peaks more than 1.5 as recorded in (Table 3).

Application
Analysis of each of the pharmaceutical formulation was done by injecting different concentrations of sample solution into HPLC in triplicates under the mentioned optimum conditions. Concentration of each drug in tablet was calculated using the calibration curve, and the results were recorded in (Table 4).Validity of the method was assessed applying the standard addition technique.

Table 3: System Suitability Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Metformin hydrochloride</th>
<th>Sitagliptin phosphate</th>
<th>Atorvastatin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearity</td>
<td>0.625-20 µg/ml</td>
<td>3.125-100 µg/ml</td>
<td>0.3125-10 µg/ml</td>
</tr>
<tr>
<td>Retention time</td>
<td>2.640 min.</td>
<td>3.384 min.</td>
<td>4.837 min.</td>
</tr>
<tr>
<td>Resolution</td>
<td>4.40 7.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>More than 1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical plates'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More than 2000</td>
<td>4767</td>
<td>5446</td>
<td>9605</td>
</tr>
<tr>
<td>Peak width</td>
<td>0.1529</td>
<td>0.1834</td>
<td>0.1974</td>
</tr>
<tr>
<td>Symmetry</td>
<td>0.349</td>
<td>0.467</td>
<td>0.674</td>
</tr>
<tr>
<td>LOD</td>
<td>0.40</td>
<td>0.82</td>
<td>0.09</td>
</tr>
<tr>
<td>LOQ</td>
<td>1.20µg</td>
<td>2.47µg</td>
<td>0.27µg</td>
</tr>
</tbody>
</table>

*Tangent Line Method

Table 4: Results for application of developed HPLC method on pharmaceutical formulations

<table>
<thead>
<tr>
<th>Dosage form of drug</th>
<th>Labeled amount in mg/tab.</th>
<th>Recovered of amount in mg Mean ± SD</th>
<th>%CV</th>
<th>% of Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dialon tablet</td>
<td>100</td>
<td>99.67 ± 0.624</td>
<td>0.626</td>
<td>99.67</td>
</tr>
<tr>
<td>Januvia tablets</td>
<td>20</td>
<td>19.95 ± 0.1225</td>
<td>0.613</td>
<td>99.75</td>
</tr>
<tr>
<td>100mg/tab. Of Sitagliptinphosphate</td>
<td>500</td>
<td>501.667 ± 6.944</td>
<td>1.390</td>
<td>100.33</td>
</tr>
<tr>
<td>Lorvast tablet</td>
<td>20</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20mg/tab. Of Atorvastatin</td>
<td></td>
<td>100%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


Specificity
The specificity of the method was accessed from the chromatogram where complete separation of sitagliptin, metformin, atorvastatin, and internal standard were achieved. The peaks obtained were sharp, well separated at the baseline as shown in (Fig.4) and the resolution for all peaks more than 1.5 as recorded in (Table 3).

Application
Analysis of each of the pharmaceutical formulation was done by injecting different concentrations of sample solution into HPLC in triplicates under the mentioned optimum conditions. Concentration of each drug in tablet was calculated using the calibration curve, and the results were recorded in (Table 4).Validity of the method was assessed applying the standard addition technique.

CONCLUSION
RP-HPLC method of 7 min runtime was successfully developed for the simultaneous determination of three drugs with good resolution (more than 2) between all drugs. The method showshig degree of accuracy and precision with less than 2% RSD. The method is simple, accurate, rapid, and precise and can easily be used for routine analysis of the three drugs in pure and formulated forms (tablets, capsules and powder). The method can also be applied in plasma and urine samples.

REFERENCES

Specificity
The specificity of the method was accessed from the chromatogram where complete separation of sitagliptin, metformin, atorvastatin, and internal standard were achieved. The peaks obtained were sharp, well separated at the baseline as shown in (Fig.4) and the resolution for all peaks more than 1.5 as recorded in (Table 3).

Application
Analysis of each of the pharmaceutical formulation was done by injecting different concentrations of sample solution into HPLC in triplicates under the mentioned optimum conditions. Concentration of each drug in tablet was calculated using the calibration curve, and the results were recorded in (Table 4).Validity of the method was assessed applying the standard addition technique.

CONCLUSION
RP-HPLC method of 7 min runtime was successfully developed for the simultaneous determination of three drugs with good resolution (more than 2) between all drugs. The method showshig degree of accuracy and precision with less than 2% RSD. The method is simple, accurate, rapid, and precise and can easily be used for routine analysis of the three drugs in pure and formulated forms (tablets, capsules and powder). The method can also be applied in plasma and urine samples.

REFERENCES

Specificity
The specificity of the method was accessed from the chromatogram where complete separation of sitagliptin, metformin, atorvastatin, and internal standard were achieved. The peaks obtained were sharp, well separated at the baseline as shown in (Fig.4) and the resolution for all peaks more than 1.5 as recorded in (Table 3).

Application
Analysis of each of the pharmaceutical formulation was done by injecting different concentrations of sample solution into HPLC in triplicates under the mentioned optimum conditions. Concentration of each drug in tablet was calculated using the calibration curve, and the results were recorded in (Table 4).Validity of the method was assessed applying the standard addition technique.

CONCLUSION
RP-HPLC method of 7 min runtime was successfully developed for the simultaneous determination of three drugs with good resolution (more than 2) between all drugs. The method showshig degree of accuracy and precision with less than 2% RSD. The method is simple, accurate, rapid, and precise and can easily be used for routine analysis of the three drugs in pure and formulated forms (tablets, capsules and powder). The method can also be applied in plasma and urine samples.

REFERENCES

Specificity
The specificity of the method was accessed from the chromatogram where complete separation of sitagliptin, metformin, atorvastatin, and internal standard were achieved. The peaks obtained were sharp, well separated at the baseline as shown in (Fig.4) and the resolution for all peaks more than 1.5 as recorded in (Table 3).

Application
Analysis of each of the pharmaceutical formulation was done by injecting different concentrations of sample solution into HPLC in triplicates under the mentioned optimum conditions. Concentration of each drug in tablet was calculated using the calibration curve, and the results were recorded in (Table 4).Validity of the method was assessed applying the standard addition technique.

CONCLUSION
RP-HPLC method of 7 min runtime was successfully developed for the simultaneous determination of three drugs with good resolution (more than 2) between all drugs. The method showshig degree of accuracy and precision with less than 2% RSD. The method is simple, accurate, rapid, and precise and can easily be used for routine analysis of the three drugs in pure and formulated forms (tablets, capsules and powder). The method can also be applied in plasma and urine samples.

REFERENCES

Specificity
The specificity of the method was accessed from the chromatogram where complete separation of sitagliptin, metformin, atorvastatin, and internal standard were achieved. The peaks obtained were sharp, well separated at the baseline as shown in (Fig.4) and the resolution for all peaks more than 1.5 as recorded in (Table 3).

Application
Analysis of each of the pharmaceutical formulation was done by injecting different concentrations of sample solution into HPLC in triplicates under the mentioned optimum conditions. Concentration of each drug in tablet was calculated using the calibration curve, and the results were recorded in (Table 4).Validity of the method was assessed applying the standard addition technique.

CONCLUSION
RP-HPLC method of 7 min runtime was successfully developed for the simultaneous determination of three drugs with good resolution (more than 2) between all drugs. The method showshig degree of accuracy and precision with less than 2% RSD. The method is simple, accurate, rapid, and precise and can easily be used for routine analysis of the three drugs in pure and formulated forms (tablets, capsules and powder). The method can also be applied in plasma and urine samples.
17. Ebru\c{c}"uk\c{u}r, Development of a gas chromatography-mass spectrometry method for the analysis of sitagliptin in human urine. Journal of Pharmaceutical and Biomedical Analysis 2013; 74: 71-76.