PERCUTANEOUS DRUG DELIVERY SYSTEMS FOR IMPROVING ANTIFUNGAL THERAPY EFFECTIVENESS: A REVIEW

MAXIMILIANO GliUJOY, CLAUDIA SALERNO, CARLOS BREgni, ADRIANA M. CARLUCCI*

1Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Junin 956 - [1113] Buenos Aires, Argentina.

Email: adrianaC@fiyb.uba.ar, amcarlucci@gmail.com

Received: 03 Jun 2013 Revised and Accepted: 15 Feb 2014

ABSTRACT
This article reviewed the current knowledge on percutaneous antifungal drug delivery systems in relation to their use to treat skin infections, not only the ones related with fungi but also with Leishmania parasites that grow in skin layers. Azoles are the most commonly used antifungals in clinical treatment of superficial fungal infections, but their physicochemical properties limit their bioavailability; consequently most of the azole-loaded delivery systems reported lately searched for the improvement of drug efficacy. Formulation design and optimization are key steps for increasing the therapeutic efficacy. The present work summarized the different drug delivery systems that have attracted most interest lately and also the most relevant achievements of pharmaceutical technology are described. Among the vesicular systems, liposomes and niosomes have shown relative therapeutic success; on the other hand, Transfersomes® and ethosomes seemed more promising. Solid lipid nanoparticles have shown interesting delivery parameters; microemulsions, which are extensively studied carriers, have demonstrated an enhanced percutaneous absorption of therapeutic agents and a significant improvement in antifungal effect. From the point of view of the Pharmaceutical Technology, dissolution properties by increasing chemical potential, stabilization of the drug delivery system and high concentration of drugs targeted to the infection sites were the most relevant aspects searched; ease of fabrication and cost were also considered.

Keywords: Percutaneous administration, Antifungal drug delivery, Superficial mycoses, Cutaneous leishmaniasis.

INTRODUCTION
It is well-known that to elicit a pharmacologic response following topical administration, drugs must enter and diffuse across the skin. The rate and extent of transport will depend on the interplay between the drug molecular properties and the characteristics of the biologic tissue. The drug may also interact with specific proteins or other membrane components. These interactions can prolong residence time and therapeutic effect; for example, azoles have affinity for keratin just like dermatophytes which are their therapeutic target. Drug properties that increase permeability across a given membrane may render the molecule less effective at another biologic tissue; the stratum corneum (SC) is a lipid barrier, in consequence, formulation design and optimization are key steps in increasing the therapeutic efficacy of topical antifungal therapy. [1]

The protective function of human skin imposes physicochemical limitations to the type of permeant that can go through this barrier. A drug to be passively delivered via the skin needs to have adequate lipophilicity and also a molecular weight <500 Da. Limited commercially available drugs fulfill these requirements for percutaneous delivery. Various strategies have emerged over recent years to optimize delivery which can be categorized into passive and active methods. The passive approach entails the optimization of formulation or drug vehicle to increase skin permeability. However, passive methods do not greatly improve the permeation of drugs with molecular weights >500 Da. On the other hand, active methods normally involve physical or mechanical strategies of enhancing delivery and have been shown to be generally superior. [2] Although therapeutically relevant doses could recently be delivered through skin with the use of iontophoreses and microneedles, these treatments need to be further explored to develop alternative therapies which will overcome the compliance and absorption issues associated with currently used treatments. [3]

Efficient topical drug administration for the treatment of fungal infections would deliver the therapeutic agent to the target compartment and reduce the risk of systemic side effects. Innovative delivery systems do not only allow this goal, but enhance the efficacy of drugs. However, the physicochemical properties of the commonly used azole antifungals make their formulation a considerable challenge. In general, azole antifungals tend to be highly lipophilic and they can readily partition into the lipid-rich intracellular space in the SC; the challenge is to develop a simple stable formulation that facilitates drug release into the skin. [4, 5] Both, new azole derivatives with a favorable risk-benefit ratio, and new formulations of older azoles were lately under development in various companies. Drug delivery technology scenario has become highly competitive and rapidly evolving. More and more development in delivery systems is being integrated to optimize the efficiency and cost of the therapy. Controlling the release rate of active agents to a predetermined site in human body has been one of the biggest challenges faced by drug industry. [6, 7]

Consequently, most of the azole-loaded delivery system reported lately searched for the improvement of drug efficacy. Some of these delivery systems are discussed in the following sections. Manipulation of drug formulations for improvement of the antifungal pharmacokinetic, targeted delivery, sustained release, and prolonged retention of high drug concentration at the infection site were some of the strategies. [8]

This article reviews the current market and knowledge on percutaneous antifungal drug delivery system in relation to the treatment of skin infections, not only the ones related with fungi but also with Leishmania parasites that grow in skin layers. The different drug delivery systems that have been published during the last five years were reviewed. The penetration rate of the loaded drug across the skin, mechanisms of skin permeation and dermal tolerability of these vehicles are described. A state of art of microemulsions (MEs) used as delivery systems for antifungal drugs is also extensively discussed.

Pharmacotherapeutical agents in the treatment of superficial mycoses
Currently used antifungal preparations: General concepts
The main categories of broad-spectrum agents are the allylamines and azoles, which have been tried and proven effective over more than two decades of usage with good safety. Although no new therapeutic groups have appeared, extensive development of innovative delivery systems for the topical route have enhanced...
therapeutic results and increased patient compliance. Nonetheless, some vehicles such as foams, lacquers, and gels maintain their market share because no new topical formulations offer significant advantage.

Azole antifungal agents are the most commonly used antifungals in clinical treatment of both superficial and systemic fungal infections. They are classified in two groups: imidazoles [miconazole (MCZ), ketoconazole (KTZ), clotrimazole (CLZ), econazole (ECZ)] and triazoles [fluconazole (FLZ), itraconazole (ITZ), voriconazole, and posaconazole]. Azoles inhibit ergosterol synthesis by blocking 14a-demethylation of lanosterol, which leads to impaired membrane stability and growth inhibition. They are effective against dermatophytes, Malassezia spp, and Candida spp. Azoles hydrophobicity limits their bioavailability and antifungal effects. As a result of their limited bioavailability imidazoles are considered as safe as topical therapy for fungal skin infections during pregnancy. [11]

Millikan has recently published a review in which he pointed out that in USA [United States of America] several of these agents are now generic. CLZ has been OTC (over-the-counter) medication for 14 years. Despite reports of their usefulness, their antileishmanial activity was not enough to induce clinical cure by themselves [9]. In USA, MCZ has the largest number of preparations, such as Micatin® and Monistat®. [9]

In South America exists a similar situation with a high number of trademarks that are not always representative of the same loaded drug; these products have gained a main spot in the market. For example, Empecid® (Bayer, Argentina) is the most popular CLZ-OTC nowadays; it is available as cream, vaginal cream, vaginal softgel capsules, spray, foot powder and lotion. In contrast, there’s another presentation called Empecid “pie”® which includes bifonazole in its formulation. Furthermore, Lamisil® (Novartis Argentina S.A.) is the most popular Terbinafine (TB)-OTC trademark; it is available in solution and cream. Simanida® (EJ. Gezzi, Argentina) is one of ECV -OTC, which has several available dosage forms, however, Simanida’s® contains undecenoic acid, Simanida® cream contains ECV or TB, and Simanida® shampoo contains KTZ. In conclusion, it is not possible to associate a trademark with only one active compound, but it is usual instead to see that the same trademark containing different active compounds.

There are a few landmark studies to distinguish one imidazole as being superior to another when treating superficial infections. In all, the market offers a wide variety of products with no difference in treatment effectiveness among them. The development of novel delivery systems aims to improve administration and cure rate. In addition, the present market does not offer efficient treatments to every kind of infection. Onychomycosis is a fungal infection of nails caused by dermatophytes, yeasts or non-dermatophytic molds. It represents about 30% of mycotic cutaneous infections and is frequently used as topical agent in the treatment of onychomycosis. Nystatin, which belongs to the polyene group of antifungal drugs, is frequently used as topical agent in the treatment of oropharyngeal candidiasis. Nystatin works by binding to the sterols in cell membrane, resulting in leakage and permeability issues. It is only effective against Candida. It is available in cream, ointment, and powder forms. Nystatin is minimally absorbed and is effective for vaginal therapy. Therefore, it is the treatment of choice during pregnancy. [9, 11, 29]

Physico-chemical and pharmacokinetic properties of antifungal drugs

The physicochemical and pharmacokinetic properties of these drugs plus their inherent antifungal potency determine their efficacy, so they are important issues to consider in pre-development stage. FLZ is more polar than other azoles, slightly soluble in water (5 mg/mL at 37°C), metabolically stable and exhibits low protein binding. It presents excellent efficacy in vivo but a low activity in vitro. In contrast, other azoles are more lipophilic, metabolically vulnerable compounds, with high protein binding and negligible solubility in water. Although FLZ is less active than KTZ in vitro, its distribution throughout the body and the high levels of free drug reached in blood contribute to its efficacy. Even for KTZ the levels of free drug in blood may help efficacy. KTZ is a broad spectrum antifungal agent but it has two characteristics that make it difficult to use: it is a poor water-soluble drug and it undergoes chemical degradation, such as oxidation and hydrolysis. KTZ molecular weight [MW] is 531.4 Da and its pKa values are 6.51 and 2.94 (dibasic), whereas MW of FLZ is 306.3 Da and has a pKa value of 3.7 (weak base). For very lipophilic agents like ITZ, drug blood levels are very low, and organ levels may correlate better with efficacy, however, tissue binding will be high and total drug levels in an organ may be misleading indicator of efficacy. [18-20] ITZ presents a MW of 705.6 Da and a pKa value of 3.7 (weak base). CLZ and MCZ have MW of 344.8 Da and 479.1 Da, and pKa values of 6.12 and 6.65, respectively. They are both very lipophilic drugs and are commonly used as topical antifungal agents. [21-24]

Allylamines [TB] and benzylamines (Bedaftene) are recognized as the most innovative groups, which block the activity of squalene epoxidase and thus inhibit the cyclization to lanosterol. They are effective against dermatophytes, Malassezia, and Candida and are indicated for general superficial mycoses. These antifungals are characterized by very low minimum inhibitory concentration against dermatophytes, but these drugs are less effective against yeasts and molds. [9, 9] In USA, Lotrimin AF spray contains MCZ and pKa value of 3.7. It is minimally absorbed and is effective for vaginal therapy. [25, 26] TB was demonstrated to be ineffective against Leishmania amazonensis-infected mice and Leishmania chagasi-infected hamsters. Generally, allylamines are not considered for Leishmania is treatment. [27, 28]

Opportunistic oral infections caused by Candida albicans and non-albicans Candida species are particularly common in immunocompromised patients. Nystatin, which belongs to the polyene group of antifungal drugs, is frequently used as topical agent in the treatment of oropharyngeal candidiasis. Nystatin works by binding to the sterols in cell membrane, resulting in leakage and permeability issues. It is only effective against Candida. It is available in cream, ointment, and powder forms. Nystatin is minimally absorbed and is effective for vaginal therapy. Therefore, it is the treatment of choice during pregnancy. [9, 11, 29]

Drug delivery systems under current development

Vesicles

Liposomes and niosomes have received increasing attention over the last decades as means of transdermal drug delivery. They act as drug carriers to deliver entrapped drug molecules across the skin, as well as penetration enhancers because of their composition. In addition, these vesicles serve as a depot for the sustained release of active compounds in the case of topical formulations, as well as rate-limiting membrane barrier for the modulation of systemic absorption in the case of transdermal formulations. Vesicle formulations can be classified into two categories: rigid vesicles - liposomes and niosomes- and elastic or ultra-deformable vesicles -transferosomes and ethosomes-. The rigid ones are generally not suitable for transdermal delivery as they get trapped in the upper layers of stratum corneum (SC), providing an essentially epidermal delivery. Elastic vesicles minimize the defective transdermal permeation of a number of drugs with high and low molecular weight, and they are one of the major advancements in vesicle research. [30, 31] A wide variety of lipids and surfactants can be used to prepare vesicles, which are commonly composed of...
phospholipids (liposomes, ethosomes, transferosomes, transethosomes) or no ionic surfactants (niosomes, spanlastics). Vesicle composition and preparation method influence their physicochemical properties (size, charge, lamellarity, thermodynamic state, deformability) and therefore their efficacy as drug delivery systems. Many novel formulations have utilized them topically to enhance either permeability or drug targeting to a specific layer of the skin. The main problem with these formulations is that a minimal change in the formulation could transform it from a local targeting preparation to a systemic one. [32-35]

On the view of all the systems shown in Table 1 it can be said that there is not a significant increase in skin permeation shown by these systems, even though an increase in activity is observed and modified release mechanisms are in most cases possible. Entrapment efficiency is also an issue to be considered.

Ethosomes have also been studied for topical applications. They are elastic phospholipid-based nanovesicles containing high percentages of ethanol (20–45%); they have demonstrated to be effective at enhancing dermal and transdermal delivery of both lipophilic and hydrophilic drugs. Ethanol is known as an efficient permeation enhancer. It can interact with the polar head group region of the lipid molecules, resulting in the reduction of the melting point of the SC lipid, thereby increasing lipid fluidity, and cell membrane permeability. The high flexibility of vesicular membranes from the added ethanol permits the elastic vesicles to squeeze themselves through pores, much smaller than their diameters. Thus, ethosomal systems are much more efficient in delivering substances to the skin in terms of quantity and depth than conventional liposomes. Research has also indicated that ethosomes possess good storage stability because of the presence of ethanol, which provides a net negative surface charge, thus avoiding aggregation of vesicles due to electrostatic repulsion. Microscopic examinations suggest ethosomes to be multilamellar spherical vesicles with a smooth surface. [34, 44, 45]

Table 1: Overview of Liposomal and Niosomal systems loaded with antifungal agents

<table>
<thead>
<tr>
<th>Dosage Forms</th>
<th>Composition and preparation method</th>
<th>Results</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLZ-loaded liposomes/niosomes into carbopol gel</td>
<td>Lipid/nonionic surfactant-based dry-film hydration method</td>
<td>Size around 300 nm</td>
<td>Maximum therapeutic efficacy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Poor entrapment efficiency (< 30%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increased drug accumulation - Sustained release of drug</td>
</tr>
<tr>
<td>Ciclopirox olamine liposome system</td>
<td>Phospholipon® 90H/ Dicetyl phosphate / Cholesterol Ethanol injection method</td>
<td>Size 200-1000 nm</td>
<td>Entrapment efficiency lower than 50%</td>
</tr>
<tr>
<td>KTZ in niosomes</td>
<td>Dicetyl phosphate / Cholesterol Thin film hydration method</td>
<td>Entrapment efficiency with Span 60 > Span 40</td>
<td>Slow and more sustained release from span 60 than Span 40</td>
</tr>
<tr>
<td>Niosomes of TB hydrochloride (TB-HCl)</td>
<td>Tween® 20, 40, 60, and 80/ Cholesterol Thin film hydration method</td>
<td>Increase in zone of inhibition due to the controlled release Tween 40 niosomes possess maximum zone of inhibition values followed by sustained release</td>
<td>Ning M. et al. 2005 [40]</td>
</tr>
<tr>
<td>Liposomes/niosomes containing CLZ</td>
<td>Lipid hydration method</td>
<td>Total penetration through vaginal mucosa increased by 1.5-fold</td>
<td>Accumulation of CLZ into mucosa was increased by 3.1 in liposomes and 2.3-fold in niosomes.</td>
</tr>
<tr>
<td>KTZ niosomes</td>
<td>Tween® 40, 80/ Cholesterol Ethanol injection technique</td>
<td>Reduction of the therapeutic dose</td>
<td>Ning M. et al. 2005 [41]</td>
</tr>
<tr>
<td>Ciclopirox Olamine mucoadhesive liposomes</td>
<td>Phospholipon® 90H/ Dicetyl phosphate Ethanol injection method</td>
<td>Stable liposomes at vaginal pH</td>
<td>Controlled delivery</td>
</tr>
<tr>
<td>Miconazole nitrate (MCZ-N) liposomes</td>
<td>Lipid S 100 [PC] (phosphatidyl choline) 9/50.5 Propylene Glycol (PG) Hot injection method</td>
<td>Improved vesicle stability</td>
<td>Enhanced skin deposition</td>
</tr>
</tbody>
</table>

Transferosomes have been introduced the last decade and they are commercially available at the moment for a number of active compounds. They are a special type of liposome, consisting of phosphatidylkholine and an edge activator. They can deform and pass through narrow constriction (from 5 to 10 times less than their own diameter) without measurable loss of transported drug. These vesicles are several orders of magnitude more elastic than the standard liposomes and overcome the skin penetration difficulty by squeezing themselves along the intracellular sealing lipids of the SC. Transferosomes for potential transdermal application, contain a mixture of lipids and biocompatible membrane softeners. This optimal mixture leads to flexibility of the elastic liposomal membranes and to the possibility of penetration through channels of the skin, which are opened by the carriers. [30, 35, 46-48]

The systems mentioned in Table 2 exhibited better entrapment efficiency than liposomes and niosomes. Additionally, they have accomplished very high skin permeation rates and antifungal activity. However, these systems are generally expensive.

Solid lipid nanoparticles [SLN] and Nanostructured lipid carriers [NLC] are particulate lipid matrices in the form of lipid pellets that can be produced with well tolerated lipids and surfactants. Large scale production is possible using high pressure homogenization and through the preparation of microemulsions [52]. However, SLNs have some limitations: a limited number of drugs are soluble in the appropriate lipids, and these lipids may also crystallize into more stable structures causing the expulsion of the drug out of the particles. In addition, the concentrations of lipid particles in the aqueous dispersions usually reach a maximum of only 30%, NLCs were created to overcome these limitations; these particles consist of a mixture of solid and liquid lipids that provide an irregular structure. This structure contains holes were drugs are carried and thus they are less likely to be expelled out. Even though NLCs seem superior, SLN are still considered as useful carriers due to their ease of preparation [53-56].

In systems shown Table 3, high entrapment efficiency can be observed. Increased activity and permeation rate are also commonly found results.
Amphiphilic gels

They consist solely of nonionic surfactants where one surfactant causes the gelation of another. A range of drugs can be solubilized in this type of gels, with the possibility of delivering them into and through the skin as the surfactants act as penetration enhancers. Prasadet et al. stated that the surfactant nature of the gels would cause permeation of the active agents into and/or through the skin. The gels could be used as topical/transdermal carriers without causing significant irritation to the skin. Lalit et al. prepared different amphiphilic gel formulations using extensively known surfactants (Tween® 80 and Tween® 20) and observed a stable, safe and efficient delivery system for FLZ with an interesting cumulative percentage drug releases (more than 90%) [61, 62].

Polymeric micelles

Aqueous micelle solutions of CLZ, ECZ-N and FLZ in polymeric micelles prepared with novel amphiphilic methoxy-poly[ethylene glycol]-hexyl substituted polyacrylate block copolymers were developed by Bacharr et al. ECZ-N was incorporated with an efficiency of 98.3%. ECZ delivery was compared to that from Peravyl® cream, a liposomal formulation for topical application with ECZ 1% w/w. A significant penetration enhancement was observed in human skin; the amounts of ECZ-N deposited showed a 7.5-fold improvement in delivery [5].

Emulgels

Gellified emulsions or emulgels, have emerged as interesting topical drug delivery systems as they have dual release control system (emulsion and gel). Also the stability of the emulsion is increased when it is incorporated in gel. CLZ was formulated into emulgels using two grades of modified co-polymers of acrylic acid, namely Pemulen® TR1 and TR2. A selected formula containing jojoba oil showed excellent stability as well as high rate of CLZ release. However, the antifungal evaluation of this formula revealed an increase of only 1.2-folds compared to commercially available formulation. Deveda et al. developed a gellified emulsion for controlled delivery of ITZ, the emulsion was formulated and then incorporated in a Carbolip® gel. The results revealed that the optimized emulsion showed a 95.06% release in 48 h and a stable release rate for about 3 h. In the efficacy assays, the optimized emulsion showed a 46.6% inhibition, whereas the marketed formulation showed only a 32.3% inhibition. Furthermore, skin irritation tests show no edema or erythema [63, 64].

Microsponges

Microsponges for the controlled release of topical agents typically consist of macroporous beads of a diameter of 10-25 µm. When applied to the skin, they release the active ingredient gradually and also in response to stimuli such as rubbing, temperature, pH, etc. The advantages of this kind of technology involve appropriate entrapment of ingredients, improved stability, and enhanced formulation flexibility. This technology is being used currently in cosmetics, OTC skin care products, sunscreens and prescription products. Numerous studies have confirmed that microsphere systems are non-irritating, non-mutagenic, non-allergenic, and non-toxic. Microsponges containing KTZ with six different proportions of Eudragit® RS 100 as polymer were successfully obtained using quasi-emulsion solvent diffusion method. These formulations were prepared as gel in 0.35 %w/w Carbopol®. They showed appropriate drug release profile, viscosity, spreadability and antifungal activity [7, 65, 66].

Foams

The application of pharmaceutical foams in topical therapy can be traced back three decades. However, foam formulations have been gaining popularity with over 100 patents published globally just in the last 10 years. The use of foam technology to deliver topical active agents includes antifungals. Although foams present distinct application advantages and improved patient compliance, the real
reason for the rapid growth of topical foam technology is that foams are elegant, aesthetic and cosmetically appealing vehicles that provide an alternative and promising formulation strategy in the highly competitive dermatological market. Presently, there is a lack of sufficient clinical evidence to demonstrate any superiority of foams over other traditional topical vehicles such as creams and ointments for drug delivery. [67] The successful introduction of hydroalkolic foams allowed the development of a new generation of foam products. Such foams, designated as emollient foams consist of oil-in-water or water-in-oil emulsions. They can carry a broad variety of topical drugs, including water-soluble, oil-soluble and suspended active agents. They have several functional advantages as vehicles of topical drugs including: improved usability, safety, controllable drug delivery, skin barrier build-up, hydration and enhanced clinical efficacy [68].

Table 3: Overview of SLN and NLC systems loaded with antifungal agents.

<table>
<thead>
<tr>
<th>Drug and Dosage Forms</th>
<th>Composition and preparation method</th>
<th>Results</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>KTZ SLN hydrogels</td>
<td>Compritol® ATO 888, Precirol® ATO, almond oil</td>
<td>Rheological characteristics suitable for topical applications</td>
<td>Paolicelli, P. et al. 2011 [18]</td>
</tr>
<tr>
<td>MCZ-N SLN</td>
<td>Solvent injection technique</td>
<td>10-fold greater skin retention than MCZ-N suspension and hydrogel</td>
<td>Jain S. et al. 2010 [57]</td>
</tr>
<tr>
<td>MCZ-N SLN</td>
<td>Compritol® 888 ATO, Tween® 80 and glyceryl monostearate</td>
<td>Entrapment efficiency 80%-100%</td>
<td>Bhaeker MR. et al. 2009 [58]</td>
</tr>
<tr>
<td>ECZ-N SLN</td>
<td>Isopropyl fatty esters (C 13-23) and Precirol® ATO</td>
<td>Entrapment efficiency of about 100%</td>
<td>Sanna V. et al. 2009 [59]</td>
</tr>
<tr>
<td>TB SLN</td>
<td>Compritol® and Precirol® Tween® and Cremophor®</td>
<td>TB penetrated the SC similar to Lamisil®Once (marketed formulation that releases a full dose in 24 h)</td>
<td>Ying Chen-Chen et al. 2012 [60]</td>
</tr>
<tr>
<td>CLZ SLN and NLC</td>
<td>Compritol® 888 ATO, Alpha-tocopherol (liquid lipid for NLC), Poloxamer® 188, sodium deoxycholate</td>
<td>Stable for 3 months of storage at 4-20-40°C. Entrapment efficiency higher than 50%. Modified release over a period of 10 h</td>
<td>Souto EB. et al. 2004 [53]</td>
</tr>
<tr>
<td>K07 SLN and NLC</td>
<td>Compritol® 888 ATO, Alpha-tocopherol (liquid lipid for NLC), Poloxamer® 188, sodium deoxycholate</td>
<td>Chemical degradation of KTZ in SLN under light exposure. Light-protected drug in NLC.</td>
<td>Souto EB, Müller RH. 2005 [54]</td>
</tr>
<tr>
<td>CLZ in SLN and NLC</td>
<td>Dynasan® 116, Miglyol® 812, Tyloxapol®</td>
<td>Spherical Size 400 nm Chemical stability after 2 years</td>
<td>Souto EB, Müller RH. 2006 [55]</td>
</tr>
<tr>
<td>CLZ and KTZ in SLN and NLC</td>
<td>Polycarbonate hydrogels (mucoadhesive)</td>
<td>95% of CLZ and 30% of KTZ recovered from SLN and NLC after 2 years of shelf-storage [higher than reference emulsions]</td>
<td>Souto EB, Müller RH. 2006 [56]</td>
</tr>
</tbody>
</table>

Microemulsions

Recently, much attention has been paid to the application of microemulsions [MEs] as drug delivery systems. Part of this interest appears as a consequence of their ease of preparation and long-term stability. These properties as well as their ability for incorporating drugs of different lipophilicity are some of the reasons why MEs have been thoroughly considered for pharmaceutical purpose. They can be formulated not only to enhance the solubility of slightly soluble compounds but also to increase the dissolution rate of the drug [69]. MEs are isotropic, thermodynamically stable, transparent or translucent systems composed of oil, water, and surfactant, frequently in combination with a co-surfactant. Droplet size usually ranges 20–200 nm. Since their discovery, they have attained increasing significance both in basic research and in industry. Due to their distinct advantages such as enhanced drug solubility, thermodynamic stability, optical clarity, easy preparation, and low cost, uses and applications of MEs have been numerous. Azeem explored MEs as transdermal drug delivery vehicles with emphasis on components selection for enhanced drug permeation and skin tolerability of these systems. MEs have demonstrated to be an appropriate delivery system for topical and transdermal delivery as they also show excellent biocompatibility. Several plausible mechanisms have been proposed about the role of MEs in transdermal delivery of a drug: 1) a large amount of drug can be incorporated in the formulation due to the high solubilizing capacity that might increase thermodynamic activity towards the skin. The permeation rate of the drug from ME may be increased, as the affinity of a drug to the internal phase in ME can be easily modified by changing its portion in the ME; 2) the surfactant and co-surfactant in the MEs may reduce the diffusional barrier of the SC by acting as penetration enhancers; and 3) the percutaneous absorption of drug will also increase due to hydration effect of the SC if the water content in ME is high enough [33, 70-78]. Table 4 summarizes MEs containing antifungal agents. Positive results involving ease of fabrication with low costs, increase in permeation rate and activity, safety, targeting possibilities and modified release rates have made MEs the most referred system in the present review and a very promising dosage form for future investigation.

Materials used in percutaneous antifungal drug delivery systems

Excipients used in ME and other lipid-based systems

Nowadays, topical administration tends to include ‘generally regarded as safe’ [GRAS] excipients, to enhance skin tolerability and reduce adverse effects, without disregarding the formulation and preparation. As vesicular systems and MEs have been the most studied delivery systems for antifungal drugs, a brief summary of the currently preferred excipients for them is presented in the following paragraphs.
Highest values of releas
Permeability 2.5 fold higher than the marketed formulation
Controlled release
Percutaneo
Enhanced percutaneous absorption with increasing LA and
Higher
Isopropyl fatty esters C13 -C23 |

- Semisynthetic oils are more stable than their natural counterparts, thus, they have mostly replaced them: Ethyl oleate [73], Isopropyl myristate [76,78], Isopropyl palmitate [72,73], Isopropyl fatty esters C13-C23 [59], glyceryl monoestearate, [58] mono-diglycerides-Capmul® [71]. Also, semisynthetic medium-chain derivatives are amphiphilic compounds with surfactant properties.

Surfactants

- **Twee®**: 80
- **Brij**: 97, 96, 58, 69
- **Labrasol**: 80, 78
- **Cremophor®**: RH40
- **Capmul®**: 96, Jojoba oil
- **Cutina**: 96, Capmul®, Jojoba oil
- **Lab/EtOH**: ratio
- **Transcutol P**: 80
- **Cremophor**: RH40
- **Diethyleneglycol monoethyl ether**
- **Cremophor®**: RH40
- **Capmul®**: 96
- **Capryloyl macrogol gum**
- **Monooleate**
- **Labrasol**: 80, 78
- **Cremophor®**: RH40
- **PEG**: 80
- **Ethanol**
- **Alcohols**
- **Lauryl alcohol**
- **Stearic acid**
- **Glycerol mono- and diesters**
- **Phospholipids**: Lecithin [70,73,83]. Fluid-state derivatives are of

Oil phase

- Natural oils: lemon oil [78], ajowan oil and peppermint oil [69 ex 68], eucaliputs oil [48], jojoba oil [71]. Additionally, a number of plant oils have been reported to have antifungal, anti-parasitic and anti-dermatophytic properties. A recent review updated information on plant essential oils with these properties. [82]

- Semisynthetic oils are more stable than their natural counterparts, thus, they have mostly replaced them: Ethyl oleate [73], Isopropyl myristate [76,78], Isopropyl palmitate [72,73], Isopropyl fatty esters C13-C23 [59], glyceryl monoestearate, [58] mono-diglycerides-Capmul® [71]. Also, semisynthetic medium-chain derivatives are amphiphilic compounds with surfactant properties.

Table 4: Overview of ME systems containing antifungal agents.

<table>
<thead>
<tr>
<th>Drug / type of ME</th>
<th>Composition</th>
<th>Results</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCZ-N Positively charged MEs</td>
<td>Charge-inducing agent stearylamine, L-alanine benzyl ester or cetyltrimethylammonium bromide. Jojoba oil, Cutina®, glyceryl stearate, glyceryl monoestearate, Brij® 96, Capmul®, 96, Jojoba oil</td>
<td>Interaction between positive ME systems and negatively charged skin sites</td>
<td>Peira E. et al. 2008 [70]</td>
</tr>
<tr>
<td>FLZ ME gel</td>
<td>Isopropyl palmitate, Aerosol®OT and Sorbitan® Monoooleate</td>
<td>Highest values of release and permeation from ME compared with Cutina®,lipogels FLZ antifungal activity showed the widest zone of inhibition</td>
<td>El Laithy HM, El-Shaboury KM. 2002 [71]</td>
</tr>
<tr>
<td>FLZ ME-based organogel</td>
<td>Ethyl oleate, Lecithin</td>
<td>Significant increase in antifungal activity as compared to marketed formulation</td>
<td>Jadhav KR. et al. 2010 [72]</td>
</tr>
<tr>
<td>FLZ</td>
<td>Lauryl alcohol (LA), Labrasol® and ethanol</td>
<td>Enhanced percutaneous absorption with increasing LA and water contents and with decreasing Labrasol®/EtOH ratio in the formulation Permeability 2.5 fold higher than the marketed formulation</td>
<td>Patel MR. et al. 2009 [74]</td>
</tr>
<tr>
<td>FLZ</td>
<td>Isopropyl myristate, Twee® 80 and propylene glycol 400</td>
<td>The whole contained dose delivered and enhanced skin penetration</td>
<td>Shah RR. Et al. 2009 [75]</td>
</tr>
<tr>
<td>FLZ</td>
<td>Diethyleneglycol monoethyl ether</td>
<td>ME with TCL better antifungal activity than the one containing PG</td>
<td>Carlucci A, Bregn C 2010 [76]</td>
</tr>
<tr>
<td>FLZ</td>
<td>Propylene glycol</td>
<td>Percutaneous absorption of KTZ from MEs was enhanced with increasing LA and water contents, and with decreasing Lab/EtOH ratio</td>
<td>Patel MR. et al. 2008 [77]</td>
</tr>
<tr>
<td>CLZ</td>
<td>Lemon oil, Twee® 80, n-butanol, isopropyl myristate</td>
<td>Higher skin retention than marketed cream Higher in vitro activity against C. albicans than conventional cream</td>
<td>Hashem FM. et al. 2011 [78]</td>
</tr>
<tr>
<td>CLZ</td>
<td>Cremophor® EL, Capryol® 90, Benzyl alcohol</td>
<td>Clinical evaluation proved efficacy and tolerability Higher in vitro biodistribution and antifungal activity than marketed product</td>
<td>Bachhav YG. et al. 2011 [5]</td>
</tr>
<tr>
<td>ITZ</td>
<td>Polymeric gels of Lutrol® FI27, Xanthan gum</td>
<td>ControBed release Nonirritant and no erythema or edema</td>
<td>Chudasama A. et al 2011 [22]</td>
</tr>
<tr>
<td>TB-HCl</td>
<td>Oleic acid, Caprylo caprylo macrogol-8-glyceride (Labrasol® S), Transcutol® P</td>
<td>Higher anti-fungal activity against C. albicans and Aspergillus fava than the marketed product</td>
<td>Baoosta S. et al. 2007 [79]</td>
</tr>
<tr>
<td>TB-HCl</td>
<td>Twee® 80, ajowan oil and peppermint oil</td>
<td>No physical changes when exposed to freeze-thaw cycles for 72 h</td>
<td>Mehta K, Bhatt DC. 2011 [69]</td>
</tr>
<tr>
<td>VCN</td>
<td>Sodium deoxycholate or oleic acid</td>
<td>4 h prolonged release, transdermal delivery</td>
<td>El-Halidy GN. et al. 2012 [81]</td>
</tr>
<tr>
<td>VCN</td>
<td>Brij®97, Jojoba oil</td>
<td>12 months storage stability at 25 °C. Better antifungal activity against C. albicans than supersaturated solution Pseudoplastic flow with thixotropy</td>
<td></td>
</tr>
</tbody>
</table>

Because of their effects over the SC and other dermis layers, and consequent adverse effects, it is recommended to diminish surfactant concentration as much as possible. However, the following surfactants are characterized for possessing good skin tolerance, extremely low toxicity, biodegradability, and large emulsifying capacity.

Phospholipids: Lecithin [70,73,83]. Fluid-state derivatives are of interest, gel-state derivatives are not able to permeate the SC efficiently [84]

Alkyl polyglycosides and alkyl esters [83]

Polymeric surfactants: Poloxamers [Lutrol®] [33]

Sugar surfactants: Sucrose esters [33]

Labrasol forms MEs with several non-alcohol cosurfactants [75,79]

Phuril I sostearique provides extensive regions of ME formation [85]

Cremophor® RH40 [56,76]
Cosurfactants
PG [43,56]
Ethanol [33,37,44,45,47,51,74]
Alcohols (C3 – C8) [78,86]
-Transcutol [76, 79]

They provide the interfacial film with sufficient flexibility to take up different curvatures required to form ME over a wide range of composition. Cosurfactant concentrations need to be optimized to achieve the highest transdermal permeation.

Table 5: Overview of absorption enhancers for antifungal agents

<table>
<thead>
<tr>
<th>Drug</th>
<th>Enhancer</th>
<th>Results</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB</td>
<td>Pentane-1,5-diol and propane-1,2-diol</td>
<td>Increased percutaneous permeation</td>
<td>Evenbratt H, Faergemann J. 2009 [91]</td>
</tr>
<tr>
<td>TB</td>
<td>Different molecular weight polyethylene glycol (PEGs)</td>
<td>The most efficient absorption enhancer was pentane-1,5-diol (5%)</td>
<td>Nair AB. et al. 2010 [92]</td>
</tr>
<tr>
<td>Griseofulvin</td>
<td>PG</td>
<td>Increasing solubility and partitioning</td>
<td>Shishu, Aggarwal, N. 2006 [93]</td>
</tr>
<tr>
<td>Griseofulvin</td>
<td>N-methyl-2-pyrrolidone</td>
<td>Increased flux compared with formulation containing PG alone</td>
<td></td>
</tr>
<tr>
<td>FLZ</td>
<td>PG</td>
<td>No skin sensitization</td>
<td></td>
</tr>
<tr>
<td>Griseofulvin</td>
<td>Transcutol® (TCL)</td>
<td>Greater drug delivery into the skin with TCL. Lower in vitro antifungal activity of FLZ when PG is included.</td>
<td>Salerno C, et al. 2011 [76, 94]</td>
</tr>
<tr>
<td>Griseofulvin</td>
<td>Ethanol</td>
<td>Enhanced drug permeation and retention in the skin</td>
<td>Aggarwal N. et al. 2012 [95]</td>
</tr>
<tr>
<td>Griseofulvin</td>
<td>D-α-tocopheryl Polyethylene glycol 1000 succinate (TPGS)</td>
<td>Non-sensitizing, histopathologically safe, stable at 4°C, 25°C, and 40°C.</td>
<td></td>
</tr>
<tr>
<td>TB</td>
<td>Urea hydrogen peroxide (0.5%), ethanol</td>
<td>Increased permeation</td>
<td>Tarynor MJ. et al. 2012 [96]</td>
</tr>
</tbody>
</table>

CONCLUSIONS

Although vesicular systems assure targeted delivery, liposomes or niosomes do not achieve the desired requirement for appropriate percutaneous penetration in most cases. A new vesicular derivative, Transferosomes®, has demonstrated increased drug transdermal penetration, becoming a promising dosage form for antifungal drugs, as well as Ethosomes which exhibited enhanced antifungal activity compared to conventional liposome formulation. SLNs containing antifungal drugs showed high drug entrapment efficiency, sustained drug topical effect, and quicker relief from fungal infection. MEs showed enhanced percutaneous absorption and significant improvement in antifungal effects. Other delivery systems such as amphiphilic gels, polymeric micelles, emulgel and microsponges have also been studied for antifungal delivery.

ACKNOWLEDGEMENT

Support for this work was provided by the National Agency of Scientific and Technological Promotion (ANPCyT); Ministry of Science, Technology and Productive Innovation, Argentina.

CONFLICT OF INTERESTS

Declared None

REFERENCES

